
- 姓 名:
- 彭玉佳
- 职 称:
- 研究员 博导
- 研究领域:
- 临床心理学 焦虑与抑郁 社会认知 脑成像 人工智能
- 通信地址:
- 北京大学哲学楼
- 电子邮件:
- yujia_peng@pku.edu.cn
- 个人主页:
- https://www.ypeng.org/
- 实验室主页:
- https://www.psy.pku.edu.cn/kxyj/kysys/363505.htm
彭玉佳研究员于2014年毕业于北京大学心理学系,获得学士学位。2019年毕业于加州大学洛杉矶分校,获得博士学位。2019年到2021年,在加州大学洛杉矶分校Michelle Craske和Hakwan Lau组从事博士后研究。2021年9月入职北京大学心理与认知科学学院。彭玉佳研究员的研究主要关注焦虑症与抑郁症的机制研究,以及社会认知与人工智能研究。研究成果发表于Biological Psychiatry : Cognitive Neuroscience and Neuroimaging, Psychiatry Research, Psychological Science, Cognition,Vision Research等同行评议的重要学术期刊上。
彭玉佳课题组聚焦于临床心理学的基础研究,同时涉及认知神经和人工智能的交叉研究。课题组致力于探究焦虑症和抑郁症的心理与神经机制以及治疗方法。实验方法包含人类心理物理学实验、核磁共振成像及脑电、眼动记录及其他生物信号记录、计算建模和机器学习等。具体研究问题包括但不限于:
(1)针对生物运动识别、社会认知、意图理解等任务,临床病人是否与常人存在行为反应、眼动轨迹、生理信号反应、及大脑神经网络活动上的不同;临床病人群体内部是否存在个体差异,以及这些个体差异如何与临床症状相关联。
(2)在纵向追踪的时间层面上,是否存在神经信号、环境因素、行为信号等,可以预测焦虑症状的发生和发展。
(3)基于多维数据维度,是否可以依赖个体差异,实现最优治疗方法的匹配,以及构建个性化治疗方案。
代表论著
(* Equal contribution, # Corresponding author)
Ju, Q., Chen, Z., Xu, Z., Fan, J., Zhang, H., Peng, Y. (2025). Screening Social Anxiety with the Social Artificial Intelligence Picture System. Journal of Anxiety Disorders, 109, 102955.
Liu, F., Wang, P., Hu, J., Shen, S., Wang, H., Shi, C., Peng, Y., & Zhou, A. (2025). A psychologically interpretable artificial intelligence framework for the screening of loneliness, depression, and anxiety. Applied Psychology: Health and Well‐Being, 17(1), e12639.
彭玉佳, 王愉茜, 鞠芊芊, 刘峰, 徐佳. (2025). 贝叶斯框架下社交焦虑的社会认知特性. 心理科学进展, 33(8), 1267-1274.
Liu, F., Ju, Q. Zheng, Q., Peng, Y. (2024). AI in Mental Health: Innovations brought by AI Techniques in Stress Detection and Interventions of Building Resilience. Current Opinion in Behavioral Sciences, 60, 101452. https://doi.org/10.1016/j.cobeha.2024.101452
Peng, Y., Gong, X., Lu, H., & Fang, F. (2024). Human Visual Pathways for Action Recognition versus Deep Convolutional Neural Networks: Representation Correspondence in Late but Not Early Layers. Journal of Cognitive Neuroscience, 36(11), 2458-2480. https://doi.org/10.1162/jocn_a_02233
Cushing, C. A. , Peng, Y., Anderson, Z., Young, K. S., Bookheimer, S. Y., Zinbarg, R. E., Nusslock, R., & Craske, M. G. (2024). Broadening the scope: Multiple functional connectivity networks underlying threat conditioning and extinction. Imaging Neuroscience. 2: 1–15. https://doi.org/10.1162/imag_a_00213
王愉茜, 臧寅垠, & 彭玉佳. (2024). 成人社交焦虑问卷中文版的效度和信度评价. 中国心理卫生杂志, 38(08), 730–736. DOI: 10.3969/j.issn.1000-6729.2024.08.015
Peng, Y., Burling J., Todorova G., Pollick F., & Lu, H. (2024). Patterns of Saliency and Semantic Features Distinguish Gaze of Expert and Novice Viewers of Surveillance Footage. Psychonomic Bulletin & Review. 31, 1745-1758. https://doi.org/10.3758/s13423-024-02454-y
Xu, J., Wang, Y., Peng, Y. (2024) Psychodynamic Profiles of Major Depressive Disorder and Generalized Anxiety Disorder in China. Frontiers in Psychiatry. 15:1312980. doi: 10.3389/fpsyt.2024.1312980
Peng, Y., Han J., Zhang Z., Fan L., Liu T., Qi S., Feng X., Ma Y., Wang Y., Zhu. S.C.,(2024)The Tong Test: Evaluating Artificial General Intelligence Through Dynamic Embodied Physical and Social Interactions. Engineering.34(3), 12-22. https://doi.org/10.1016/j.eng.2023.07.006
彭玉佳, 王愉茜, 路迪. (2023). 基于生物运动的社交焦虑者情绪加工与社会意图理解负向偏差机制.心理科学进展,31(6),905-914. https://doi.org/10.3724/SP.J.1042.2023.00905
Peng, Y. , Knotts, J. D. , Young, K. S., Bookheimer, S. Y., Nusslock, R., Zinbarg, R. E., ... & Craske, M. G. (2023). Threat neurocircuitry predicts the development of anxiety and depression symptoms in a longitudinal study. Biological psychiatry: cognitive neuroscience and neuroimaging. 8(1): 102-110. https://doi.org/10.1016/j.bpsc.2021.12.013
Peng, Y., Knotts, J.D., Taylor, C.T., Craske, M.G., Stein, M.B., Bookheimer, S., Young, K.S., Simmons, A.N., Yeh, H., Ruiz, J., Paulus, P.M. (2021). Failure to identify robust latent variables of positive or negative valence processing across units of analysis. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 6(5), 518-526.
Shu, T., Peng, Y., Zhu, S., & Lu, H. (2021). A unified psychological space for human perception of physical and social events. Cognitive Psychology. 128. 101398.
Peng, Y. , Lu, H., & Johnson, S. P. (2021). Infant perception of causal motion produced by humans and inanimate objects. Infant Behavior and Development, 64, 101615.
Peng, Y. , Lee, H., Shu, T., & Lu, H. (2020). Exploring biological motion perception in two-stream convolutional neural networks. Vision Research, 178, 28-40.
Chiang J.N. , Peng, Y., Lu, H., Holyoak, K.J., & Monti, M.M. (2020). Distributed code for semantic relations predicts neural activity during analogical reasoning. Journal of Cognitive Neuroscience, 1-13.
Peng, Y. , Ichien, N., & Lu, H. (2020). Causal actions enhance perception of continuous body movements. Cognition, 194, 104060,
Ogren, M., Kaplan, B., Peng, Y., Johnson, K. L., & Johnson, S. P. (2019). Motion or emotion: Infants discriminate emotional biological motion based on low-level visual information. Infant Behavior and Development, 57, 101324.
Tsang, T., Ogren, M., Peng, Y., Nguyen, B., Johnson, K.L. & Johnson S.P. (2018). Infant perception of sex differences in biological motion displays. Journal of Experimental Child Psychology, 173, 338–350.
Keane, B. P., Peng, Y., Demmin, D., Silverstein, S. M., & Lu, L. (2018). Intact perception of coherent motion, dynamic rigid form, and biological motion in chronic schizophrenia. Psychiatry Research, 268, 53-59.
Shu, T., Peng, Y., Fan, L., Zhu, S., & Lu, H. (2017). Perception of human interaction based on motion trajectories: from aerial videos to decontextualized animations. Topics in Cognitive Science, 10(1), 225-241.
Peng, Y. , Thurman, S., & Lu, H. (2017). Causal action: A fundamental constraint on perception and inference about body movements. Psychological Science, 28(6), 798-807.
van Boxtel, J. , Peng, Y., Su, J., & Lu, H. (2016). Individual differences in high-level biological motion tasks correlate with autistic traits. Vision Research, 141, 136-144.
Chen, J., Yu, Q., Zhu, Z., Peng, Y., & Fang, F. (2016). Spatial summation revealed in the earliest visual evoked component C1 and the effect of attention on its linearity. Journal of Neurophysiology, 115(1), 500-509.
Chen, J., He, Y., Zhu, Z., Zhou, T., Peng, Y., Zhang, X., & Fang, F. (2014). Attention-dependent early cortical suppression contributes to crowding. The Journal of Neuroscience, 34(32), 10465-10474.
Lu, J. , & Peng, Y. (2014). Brain-computer interface for cyberpsychology: components, methods, and applications. International Journal of Cyber Behavior, Psychology and Learning (IJCBPL), 4(1), 1-14.