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The nature of domain-specific organization in higher-order visual cortex (ventral
occipital temporal cortex, VOTC) has been investigated both in the case of visual
experience deprivation and of modality of stimulation in sighted individuals.
Object domain interacts in an intriguing and revelatory way with visual experience
and modality of stimulation: selectivity for artifacts and scene domains is largely
immune to visual deprivation and is multi-modal, whereas selectivity for animate
items in lateral posterior fusiform gyrus is present only with visual stimulation. This
domain-by-modality interaction is not readily accommodated by existing theories
of VOTC representation. We conjecture that these effects reflect a distinction
between the visual features that characterize different object domains and their
interaction with different types of downstream computational systems.

Ventral Visual Cortex: Visual or Multi-Modal?
A core assumption of cognitive science and cognitive neuroscience is that the brain processes
information at various levels of representation, progressing from those closely tied to stimulus
features to increasingly more general and abstract representations. One of the mysteries in this
framework is the transition from modality specific representations – those explicable fully in the
language of a given modality – to representations that capture other properties of the object –

such as, for example, the possibility that a particular shape is appropriate for a certain type of
grip. The conjecture we will articulate here is related to this difficult problem in cognitive science
and cognitive neuroscience. In particular, we consider the representational distinctions, or the
information encoded in such representations, that might give rise to the well-established
domain-level organization in higher-order visual cortex (ventral occipital temporal cortex, VOTC),
and the general principles that drive this organization.

The nature of the representations computed in this territory is one of the major topics of
investigation in cognitive neuroscience. Various types of visual-level dimensions have been
proposed and examined to account for the category-preferring distributions [1–7]. This visual-
driven framework has recently been challenged by a wave of studies that reported similar
domain preference effects in sighted and congenitally blind individuals, for example, for the
animate–inanimate distinction, places, bodies, large objects, and tools [8–13]. A commonly
shared contention in these articles, highlighted in a recent review article [14], is that ‘These
findings provide a consistent demonstration of the supra-modal functional organization of
specific task-related cortical networks’, marking a shift of sentiment about the VOTC, from
being part of the visual cortex to being supra-modal and, at least partly, independent from visual
experience. In that framework, ‘supra-modal’ was defined to be ‘brain areas [that] are equally
recruited and show overlapping patterns of connectivity, mainly directed toward multisensory
brain areas, in both sighted and blind individuals and across different sensory modalities’.

However, this is a one-sided reading of the empirical findings. The literature on the effects of
visual deprivation on selectivity for various object categories actually paints an intriguing pattern
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Glossary
Connectional fingerprints: the
unique set of anatomical or functional
connections a cortical region owns,
which could be measured as the
vector of the cortical region's
connection strengths with other
cerebral regions.
Functional fingerprints: the unique
response properties a cortical region
exhibits, which could be measured as
vector of the region's response
strengths to a variety of stimuli or
tasks (e.g., object categories).
Multi-modal: for the purpose of this
review, multi-modal was used to
mean qualitatively similar task-related
activation patterns across multiple
sensory modalities even if the overall
activation strengths were different.
Resting-state functional
connectivity: the synchrony
between spontaneous temporal
fluctuations of brain activity of distinct
brain regions in the absence of
external stimuli.
Sensory substitution devices:
devices that transform stimuli
presented in one sensory modality
into stimuli of another sensory
modality. For example, shape-to-
sound sensory substitution devices
transform visual images into sounds
through isomorphic mapping from
plane coordinates and brightness of
visual pixels to timing, frequency, and
loudness of sounds.

of heterogeneity, with selectivity robustly observed for some categories even in the absence of
visual experience, whereas rarely observed, if at all, for some other categories (e.g., [12]).
Relatedly, studies that considered the effect of input modality on category selectivity in sighted
individuals have similarly found cross-modal selectivity more robustly for some categories than
others in VOTC (e.g., [15,16]). Although it has been argued [14,17–20] that interpretation of
these results require caution because potential effects obtained with nonvisual input may be
affected (contaminated) by visual imagery, it would have to be further explained how imagery
might play different roles for different object domains. The different effects of visual deprivation
and input modality on category selectivity remain unexplained by existing theories of object
representation in VOTC.

The aim here is to bring attention to this intriguing empirical phenomenon regarding the
relationship between object domain and modality in VOTC, and propose a novel conjecture
to explain this heterogeneity. The conjecture rests on the observation that the contrasting
modality effects for different object domains might reflect a distinction between the visual
features that characterize those different domains and their interaction with downstream
computational systems and, in particular, action systems.

Domain Specificity Effects across Different Modalities Are Different
When sighted individuals view pictures, various clusters in VOTC are more responsive to certain
categories of objects, such as faces, bodies, tools, or places. The overall distribution of category
preference follows a broad animate versus inanimate distinction, with a further differentiation
within the inanimate domain between manipulable and non-manipulable objects. This results in a
tripartite organization, from ventral medial regions (parahippocampal and medial fusiform)
showing preference for inanimate items broadly related to navigation, including scenes, places,
buildings, and large non-manipulable objects, to lateral regions showing a preference for
animate items including faces and animals, to more dorsolateral regions showing preference
for bodies and small, manipulable objects [21–24] (see also [8,25] for the broad animate–
inanimate pattern distinction).

In the following, we summarize the empirical findings regarding these several major object
domain effects in VOTC along this tripartite distinction, bringing together the comparison
between sighted visual versus nonvisual input and blind nonvisual cases. Studies using fMRI
and positron emission tomography (PET) in which category-selective activations in VOTC in
sighted or blind participants were investigated through at least one of the following types of
stimuli: object names (including generating mental images of object names), object sounds,
haptically presented objects, and objects presented through sensory substitution devices
(see Glossary). We considered only those cases where category selectivity was tested by
contrasting the target category to some other type of object category (control category).
Experiments where nonvisual modalities were examined but did not yield positive results were
included in an attempt to reduce potential file-drawer problems.

The results are presented in Figure 1A and Table 1. They show that the degree of consistency
across input modalities and experience groups (blind versus sighted) differs greatly across
object domains. Results for each specific domain effect are described in the following sections,
beginning with nonvisual experiments in the sighted, followed by experiments in the blind.

Items Related to Spatial Navigation
It is well established that the medial fusiform gyrus/parahippocampal gyrus is more strongly
activated when a sighted person sees pictures of scenes, buildings, or large objects relative to
other objects [12,24,26,27]. Such selectivity is highly robust across various visual and nonvisual
modalities within sighted individuals and across various nonvisual modalities in blind individuals
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Literature findings about brain regions showing mul�-modal category-specific response to animal, tool, human body, human face or
scenes and large objects.
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Figure 1. Schematic Summary of Effects of Visual Experience on Category Selectivity in Ventral Occipital Temporal Cortex (VOTC). (A) Brain areas
showing category selectivity in blind and sighted nonvisual experiments in VOTC. The studies are reported with the reference numbers in Table 1 and the reference list,
with asterisks indicating findings with blind participants. Animal (green): [22]; human face (magenta): [18,19,30–32,34]; human body and body parts (orange):
[10*,11*,30,49]; scene and large object (blue): [9*,12*,15,16,18,19,28]; Tool (red): [13*,22,42,44,45,48]. The position of each study is derived from the peak coordinates
reported. Only positive findings can be shown here; studies where category selectivity was not observed in nonvisual modalities can be found in Table 1. (B) Comparison
of the functional and connectional fingerprints of the VOTC voxels in the blind and sighted groups. The brain maps show voxel-wise similarity of resting-state functional
connectivity patterns between blind and sighted groups, of category response patterns between blind and sighted nonvisual experiments, and of category response
patterns between sighted visual and nonvisual modalities, respectively. Warmer colors indicate greater similarity, which are primarily found in the left anterior medial
fusiform gyrus/parahippocampal gyrus and lateral occipital temporal cortex (LOTC). The lateral posterior fusiform gyrus showed colder colors, indicating less similarity.
The scatter plots demonstrate the correspondence between maps across voxels. The contours mark the fusiform gyrus (solid), parahippocampal gyrus (dashed), and
inferior temporal gyrus (dash-dot). (C) Properties of the characteristic tripartite VOTC region of interests (ROIs) in blind and sighted individuals. For each ROI, the
connectional fingerprint maps show the resting-state functional connectivity strength between each region with the seed ROI (t values); the functional fingerprint map
shows the response strengths to the 16 object categories (b values). Panels (B) and (C) are adapted and reprinted with permission from the Society for Neuroscience [51].
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(i.e., robust across task input and experience), including haptic exploration to Lego scenes (both
blind and sighted), imagery generation of buildings, semantic judgment or size judgment of visual
or auditory names of places or large non-manipulable objects (both blind and sighted), or
listening to sounds associated with landmarks [9,12,15,16,18,19,28].

Animate Items
Lateral posterior fusiform is known to be more strongly activated by pictures of animate items
such as faces and animals relative to other objects [22,24,29]. Various studies investigated face-
preferring responses in nonvisual tasks in sighted individuals and in blind groups, such as
generating visual images in response to auditory cues or descriptions, performing semantic
judgment on printed names of famous people, and haptically exploring face masks
[15,18,19,30–34]. With sighted individuals performing imagery, haptic, or word tasks, contra-
dictory findings that yield no clear consensus were obtained. For the blind group, congenitally
blind participants did not show face selectivity in fusiform gyrus in haptic tasks [31,33], whereas
late blind participants did [31].

For non-human animals, using nonvisual object input, selectivity in lateral posterior fusiform was
even more fragile. Nearly all papers that included tests of animal selectivity in sighted individuals
that used written or spoken object names [8,12,22,35–41] or object sounds [16,42–45] failed to
find selectivity for animals relative to other objects.

Items Related to Bodies and Manipulable Objects
The lateral occipital temporal cortex (LOTC) is known to show preference to images of body
parts and small manipulable objects, which has been interpreted to reflect the bodily motor

Table 1. Summary of the Category Selectivity in VOTC Results in Sighted Nonvisual and Blind Nonvisual
Experiments, Organized by the Tripartite Distribution

Anatomical
Region

Functional
Selectivity

Sighted Nonvisual Blind

Selectivity Observed Selectivity Not
Observed

Selectivity
Observed

Selectivity Not
Observed

Anterior medial
fusiform/
parahippocampal

Scenes
and large
objects

Auditory word [12]
Written word [15,28]
Visual imagery [18,19]a

Haptic [9]a

Sound [16]a

Haptic [9]a

Auditory
word [12]

Lateral occipital
temporal cortex
(LOTC)

Tools Auditory word [13,48]
Written word [22,48]
Sound [42,44], [45]a

Written word [38]a Auditory
word [13]

Body Haptic [11,30], [49]a

Visual imagery [49]a
Auditory word [50]
Written word [50]
Visual imagery [30]a

Sensory
substitution
device [10]
Haptic [11]

Lateral posterior
fusiform

Animals Written word [22] Auditory word
[8,48], [12]a

Written word [38,48]
Sound [42–44],
[16,45]a

Mental imagery [41]

Auditory word
[8], [12]a

Mental imagery
[40]

Faces Visual imagery
[18,19,31]a

Haptic [30], [34]
(left fusiform), [32]a

Written words [15]
Visual imagery [30]a

Haptic [31,33]a

Haptic [31,33]a

aAnalyses were carried out using region-of-interest (ROI) analyses or within predefined masks, while the whole-brain
analyses were either not performed or yielded no significant results
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components associated with these stimuli [46,47]. The preference for tools in LOTC was robust
in nearly all studies considered, including when sighted subjects responded to printed or
auditory object names [13,22,48] and to object sounds [42,44,45]. Similar tool selectivity in
LOTC was also observed in congenitally blind individuals [13].

For preference to body parts in LOTC, studies have been carried out testing verbal or haptic
stimuli in sighted people and haptic stimuli or sensory substitution device-generated sound
stimuli in congenitally blind participants. Haptic exploration of body parts in both sighted and
blind individuals, as well as body shape conveyed through sensory substitution devices in blind
subjects, consistently activated at least part of LOTC [10,11,30,49]. The results using words are
less consistent [30,49,50].

This review shows that the results for sighted and blind participants in experiments that used
nonvisual stimuli allow the following empirical generalization: highly convergent results are
obtained for sighted and congenitally blind participants; not all object domain selectivity is
equally robust across modalities in both subject populations. Although the effects for large
objects and scenes (spatial navigation stimuli) and manipulable artifacts show a robust multi-
modal nature, the effects for animate objects were only observed in sighted individuals and only
when processing visual stimuli, with little evidence for domain effects in blind participants or in
sighted participants in experiments with nonvisual stimuli. Thus, domain-selective VOTC is
neither uniformly multi-modal (amodal) nor uniformly unimodal.

We recently provided direct support for the pattern of object domain by modality and experience
effects in VOTC gleaned from the various studies reviewed here [51] (Figure 1B,C). We
systematically compared category-related responses and resting-state functional connec-
tivity patterns between congenitally blind and sighted individuals across the whole VOTC. We
obtained voxel-wise, large-scale, continuous maps of the degree to which connectional and
functional ‘fingerprints’ of ventral visual cortex depend on visual experience or input. There
was close agreement between connectional and functional maps, pointing to a strong interde-
pendence of connectivity and function in VOTC. We observed that although visual input and
experience (or the absence thereof) had a pronounced effect on the response and connectivity
profiles of early visual cortex, their effects on higher-order ‘visual’ cortex were not homogeneous.
Specifically, the functionality and connectivity of lateral posterior fusiform gyrus was strongly
affected, whereas those of the anterior medial (showing strongest responses to navigation-
related objects) and posterior lateral parts of ventral visual cortex (showing strongest responses
to tools and body-related items) were statistically indistinguishable between blind and sighted
individuals.

In short, when the available literature on sighted and congenitally blind individuals is considered
from the perspective of modality specificity it reveals a domain-by-modality interaction. Intrigu-
ingly, this phenomenon has been in plain sight for some time but it escaped attention most likely
because it does not fit easily within current views about the nature of representations computed
in VOTC (see Box 1 for details).

Relationships between Visual and Other Object Properties
We formulate a novel conjecture about one of the factors that determines the nature of
representations in VOTC: the difference across object domains in terms of modality effects
lies in the relationship between visual shape and its functional relevance, understood as the
types of computations it triggers downstream and ultimately its connectivity structure. Visual
shape strongly constrains the way in which we interact physically with inanimate objects, but
much less so and in a far less articulated manner with animate objects. As a consequence, the
visual features of artifacts are defined jointly by their visual characteristics and their potential
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action value (e.g., the handle of a cup), making such representations accessible through different
modalities and, hence, multi-modal.

This conjecture is based on the assumption that, particularly for inanimate objects, shape
properties severely constrain their motor and function representations; that is, how we interact
with them and what they are used for. For example, a thin longish shape (blade) could afford the
motor act and function of cutting; a flattish solid shape could afford the motor act and function of
pounding. Small artifacts can be manipulated, whereas large artifacts generally indicate a fixed
location [52,53] and involve whole-body movements such as approaching or going around
them. Because of this, ‘visual’ representations of inanimate objects are typically parsed to
reflect those visual characteristics that are relevant for physical interaction. In other words, at
this level of visual representation the information encoded is not arbitrary object parts but shape
properties that map naturally onto action-based systems [54,55]. Such articulated correspon-
dence across modalities makes the VOTC representation (and probably other related modality
representations) directly addressable from different input systems and hence multi-modal, at
least in this sense.

For animate items the picture is rather different. The relationship between visual shape properties
(at least at the level of size or shape) and how we interact motorically with an animal is much less
articulated. An elongated animal could either be a harmless, even beneficial friend (e.g.,
earthworm) or a dangerous enemy (venomous snake). Two spiders with similar shape may
elicit different types of actions – one can be benign and ‘useful’ for humans, yet another can be
deadly and requires opposite reactions. The visual shape similarity between a wolf and a dog is
greater than that between a dog and a cat, yet very often the latter two elicit a more similar
reaction (petting instead of fleeing) from human observers than the former two. Item size is not
indicative of how to react either. Both small animals (leech or black widow spider) and large
animals (e.g., tiger) may elicit a same ‘flee’ action, just as both small animals (rabbit) and large
animals (deer) may elicit a same ‘catch-for-food’ act. That is, the relationship is more ‘holistic’
and arbitrary – for example, potential danger is not associated with any particular shape feature.
Owing to the lack of articulated correspondence between visual shape properties and properties

Box 1. How Well Do Existing Theories Work?

Is the phenomenon of domain-by-modality interaction explained by current theories about VOTC representation?

Object Visual Property Hypothesis

Sophisticated vision theories have been developed about how different neural patches in the ventral visual pathway come
to prefer specific object categories. The theories emphasize the role of types of visual information that are robustly
associated with object categories, such as eccentricity, size, rectilinear, or curvature features [1–3,6,7,61]. Accounts of
this type do not explain why selectivity for inanimate domains is strongly independent of visual experience and input,
whereas selectivity for animate objects seems to depend on visual experience and input. Specifically, it is unclear how the
proposed visual properties (e.g., eccentricity) lead either to the multi-modal or modality-specific nature of these patches
of VOTC. These hypotheses of the factors that determine domain specificity are not incompatible with the observed
modality heterogeneity of VOTC, but neither do they provide an explanation for the observed phenomenon.

Connectivity–Constraint Hypothesis

It has been proposed that domain specificity in VOTC is driven in large part by structural and/or functional connections
with other brain regions that process nonvisual properties of the corresponding categories [54,62–65]. However, this
hypothesis, too, is silent on why domain-preferring regions in VOTC are differentially affected by visual experience and
input type.

The interaction of domain by modality showing visual specificity for animate objects in VOTC is reminiscent of
explanations of category-specific semantic deficits for living things, which proposed that such deficits reflect damage
to a visual semantic system, which is especially important for living categories [4,37,66–69]. Whatever the merits of this
hypothesis (see [70,71] for critical analysis), the observation that visual properties are relatively more salient for living
versus non-living things does not explain why domain-preferring regions in VOTC differ in terms of whether they respond
only to visual object stimuli or to multiple modalities and types of stimuli (e.g., tactile input, spoken words).
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of other modalities, the visual representations are more ‘isolated’ from other inputs for animals.
As a consequence, fusiform ‘feature’ representations do not interact directly with other sensory–
motor systems, making them relatively inaccessible from other input modalities, and hence their
more strictly visual representational format.

Intriguingly, for some categories selectivity is found in multiple subregions within this tripartite
distribution. For instance, body parts not only induce selective responses in LOTC [56–58] but
also in lateral posterior fusiform [57–60]. The different roles played by these two regions in body
part recognition remain to be worked out. However, according to our conjecture, these multiple
subregions represent different information types, which interact with different downstream
processing systems. The representation of body parts in LOTC is appropriately formatted
for interaction with the motor system, whereas that in lateral posterior fusiform is appropriate
for further processing within the visual processing system itself. This view predicts that body
selectivity in lateral posterior fusiform gyrus is only found for visual stimuli, whereas body
selectivity in LOTC is relatively more immune to modality changes. The unimodal/multi-modal
functional specialization in domain-preferring VOTC may be related to recent findings about the
anatomical heterogeneity within this region, which show that the lateral and medial fusiform have
distinct anatomical properties (Box 2).

Concluding Remarks
We began this review article by drawing attention to an empirical phenomenon regarding the
effect of visual experience (and stimulus input) on object representations in higher-order visual
cortex, showing that contrary to recent claims that this territory is multi-modal, there is a clear
animate/inanimate dimension along which effects of modality differ. This empirical pattern
motivates a novel conjecture about the nature of representations in VOTC: representation types
are partly driven by the nature of the mapping between object visual properties and other object
properties, such as how we interact motorically with them, and generates a line of predictions
that could be empirically tested (see Outstanding Questions).
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Box 2. Anatomical Properties of Subregions in VOTC

What do we know about the anatomical properties of subregions in higher-order VOTC that might be related to our
functional proposal?

For the fusiform gyrus, a rostrocaudal shift from unimodal to polymodal cortex within the fusiform gyrus in humans has
been proposed [37]. A series of recent studies (see review in [29]) highlighted a stable macroanatomical structure, mid-
fusiform sulcus (MFS), that consistently marks various anatomical property and functional topological changes. Anato-
mically, the lateral and medial (posterior) fusiform presented distinct properties in terms of cytoarchitectonics, receptor
architectonics, myelination, and white-matter connectivity [72–76]: the region medial to MFS has a columnar organiza-
tion, whereas the one lateral to MFS is not columnar and has a higher cell density [72,73,76]. Also aligned with MFS are
the transitions in the receptor organization and the measures of tissue contrast associated with myelin gradients in VOTC
[74,75]. Differential long-range white-matter connections to VOTC were observed, constraining functional topology
associated with functional selectivity to faces and scenes [62,77].

The anatomical distinction between lateral and medial fusiform has been suggested to be in line with the different
functional preferences and eccentricity [29]. Our analysis here of the functional profile of VOTC, showing a modality-by-
object domain interaction, raises new specific questions regarding the relationship between the underlying neural
architecture with the more concretely defined functional properties. More specifically, how are the anatomical properties
of lateral posterior fusiform (e.g., higher cell density without columnar structure) related to animate shape processing, and
how are those of the medial fusiform (columnar cell organization) and LOTC related to the mapping between scene
layout/navigation and shape/manipulation, respectively? Crucially, in light of the analysis here, how is the former domain
shaped by visual experience and how are the latter two domains independent of it?

Outstanding Questions
The conjecture presented here empha-
sizes a particular characteristic of
domain properties in shaping the orga-
nization of VOTC: the nature of the
mapping between visual and other
object properties. This generates a line
of empirical predictions and questions
that are yet to be tested:

The correlation between visual proper-
ties (e.g., shape) and other types of
properties (e.g., motor/manipulation,
navigation, function) should be signifi-
cantly higher in artifacts than in animate
objects. If similarity spaces were gen-
erated for various types of features, the
correlation across visual feature simi-
larity space and specific nonvisual fea-
ture similarity space would be greater
for artifacts than for animate items, and
the cross-feature space correlation
computed would be predictive of
how ‘multi-modal’ an object category's
representation is in VOTC.

The brain connectivity (structural and/
or functional) pattern between VOTC
and other modality streams (e.g.,
motor) can be decoded from visual
features (e.g., curvature, shape, size)
for artifacts but not necessarily for ani-
mate things.

An important question concerns the
relationship between the representa-
tions in VOTC and conceptual/seman-
tic systems. If artifact representations in
VOTC are multi-modal, can they be
considered to be conceptual/semantic
in nature, whereas the modality-spe-
cific representations of animate things
do not reflect directly conceptual/
semantic properties? Although there
are hints for this distinction, a system-
atic analysis is lacking.
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