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Abstract
Alzheimer’s disease (AD) is associated not only with regional gray matter damages, but also with abnormalities in functional
integration between brain regions. Here, we employed resting-state functional magnetic resonance imaging data and voxel-
based graph-theory analysis to systematically investigate intrinsic functional connectivity patterns of whole-brain networks in
32 AD patients and 38 healthy controls (HCs). We found that AD selectively targeted highly connected hub regions (in terms of
nodal functional connectivity strength) of brain networks, involving the medial and lateral prefrontal and parietal cortices,
insula, and thalamus. This impairmentwas connectivity distance-dependent (Euclidean),with themost prominent disruptions
appearing in the long-range connections (e.g., 100–130 mm). Moreover, AD also disrupted functional connections within the
default-mode, salience and executive-control modules, and connections between the salience and executive-control modules.
These disruptions of hub connectivity and modular integrity significantly correlated with the patients’ cognitive performance.
Finally, the nodal connectivity strength in the posteromedial cortex exhibited a highly discriminative power in distinguishing
individuals with AD from HCs. Taken together, our results emphasize AD-related degeneration of specific brain hubs, thus
providing novel insights into the pathophysiological mechanisms of connectivity dysfunction in AD and suggesting the
potential of using network hub connectivity as a diagnostic biomarker.
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Introduction
Alzheimer’s disease (AD) is a progressive, neurodegenerative dis-
ease characterized by a decline of memory and cognitive func-
tions. The prevailing β-amyloid (Aβ)-cascade hypothesis of AD
pathophysiology suggests that interstitial Aβ proteins exert a
toxic effect on surrounding neurons and synapses, thereby dis-
turbing their functions (Hardy and Selkoe 2002; Selkoe 2008).

Indeed, recent research suggests that, prior to neuronal death
and atrophy, disruption of functional connectivity between re-
gions may represent an early deleterious outcome of Aβ proteins
in AD (Gili et al. 2011; Sheline and Raichle 2013). Even before the
stage of aggregation of Aβ fragments into amyloid plaques, there
is a dysfunction of synaptic transmission in many brain areas
due to dimers or evenmonomers from theAβ cascade (for review,
see D’Amelio and Rossini 2012).
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Resting-state functionalMRI (R-fMRI) is a promisingneuroima-
ging technique that can non-invasively measure spontaneous or
intrinsic brain activity (Biswal et al. 1995). R-fMRI has been widely
used to study inter-regional functional connectivity in healthy
and diseased populations (for reviews, see Fox and Raichle 2007;
Kelly et al. 2012), particularly with the capability of detecting sub-
tle connectivity abnormalities in early AD (Jacket al. 2010; Sperling
et al. 2011; Sheline andRaichle 2013). Recently, the combination of
R-fMRI and graph-based network analysis allows revealing the
topological organization of human whole-brain functional net-
works, such as small-world attributes and network modularity
(for reviews, see Bullmore and Sporns 2009; He and Evans 2010;
Wang et al. 2010). An important and convergent finding is that
human brain functional networks contain a small number of
hubs with disproportionately numerous connections (Achard
et al. 2006; Buckner et al. 2009; He et al. 2009; Tomasi and Volkow
2010). Thesebrainhubs, primarily located in themedial and lateral
frontal and parietal cortices, have higher rates of cerebral blood
flow, aerobic glycolysis, and oxidative glucose metabolism, and
play vital roles in supporting fast communication across brain re-
gions (Vaishnavi et al. 2010; Liang et al. 2013; Tomasi et al. 2013).

Recent research suggests that the brain hubsmay be preferen-
tially affected in AD. Buckner et al. (2009) have demonstrated that
the functional hubs of healthy human brains have a striking
overlap with regions showing higher Aβ deposition in patients
with AD. de Haan, Mott, et al. (2012) employed a computational
model to test the activity-dependent degeneration hypothesis
that hub vulnerability in AD could be due to the high-level con-
tinuous baseline activity and/or associated metabolism.
In mouse brains, the amount of Aβ in the interstitial fluid and
the development of amyloid plaques are associated with synap-
tic activity (Selkoe 2006; Bero et al. 2011, 2012). These findings
suggest that the brain hubs tend to have amyloid plaque depos-
ition that leads to functional disconnections among regions.
Previous R-fMRI studies reported AD-related changes in the topo-
logical architecture of whole-brain functional networks, such as
the loss of small-worldness, modular disorganization, and re-
gional dysconnectivity (Supekar et al. 2008; Sanz-Arigita et al.
2010; Liu et al. 2013; for reviews, see Xie and He 2011; Tijms
et al. 2013). However, the connectivity patterns of brain hubs in
R-fMRI networks in AD remain to be elucidated.

Many studies suggest that much of the brain’s massive meta-
bolic cost is attributable to the active maintenance of electro-
chemical gradients across neuronal membranes, which is
required to support signaling and coordination of neuronal activ-
ity at anatomically separated regions (Attwell and Laughlin 2001;
Niven and Laughlin 2008). The brain metabolic costs increase in
proportion to the total surface area of the neuronal membrane.
Thus, these costs are a function of axonal length and diameter,
which are 2 key factors to determine the area of the neuronal
membrane, with longer distance connections being metaboli-
cally more expensive to maintain (Karbowski 2007). Direct evi-
dence also suggests that the metabolic costs of brain regions
are closely associated with inter-regional connectivity distance:
Long-range brain hubs consume more energy than short-range
hubs (Sepulcre et al. 2010; Liang et al. 2013). Specifically, several
recent studies have paid more attention to the topology of ana-
tomically embedded brain networks and highlighted the import-
ance of connectivity distances on brain network organization
(Vértes et al. 2012; Alexander-Bloch et al. 2013). Relating to AD re-
search, long-range brain hubs with increasedmetabolic costmay
generate more Aβ deposition and lead to more serious functional
disconnections. However, very few studies have directly exam-
inedwhether patients with AD aremainly associatedwith longer

distance disconnections, or AD-related disruption of brain hubs
is connection-distance-dependent.

Here, we used R-fMRI and voxel-based graph analysis ap-
proaches to comprehensively investigate AD-related changes in
the functional hubs of whole-brain networks. Such a voxel-
wise approach avoids parcellation-dependent effects on the
topological organization of brain networks (Smith et al. 2011; de
Reus and van den Heuvel 2013). We sought to determine (1)
whether patients with AD show disrupted hub connectivity pat-
terns in their whole-brain functional networks and whether this
disruption is connection-distance-dependent, and (2) if so,
whether these topological changes in functional hubs signifi-
cantly correlate with the behavioral characteristics of AD and
may serve as valuable biomarkers for disease classification.

Materials and Methods
Participants

Seventy-five right-handed subjects (34 AD patients and 41
healthy controls, HCs) participated in this study. The AD patients
were recruited from individuals who consulted a memory clinic
at the Xuanwu Hospital with memory complaints. The HCs
were recruited through advertisement from the local commu-
nity. All participants were assessed clinically with the Clinical
Dementia Rating (CDR) score (Morris 1993) to be categorized as
HCs (CDR = 0) or as patients in the early stages of AD (18 patients
with CDR = 1 and 16 patients with CDR = 0.5). The patients were
given routine drug treatment (donepezil, memantine, and/or riv-
astigmine tartrate). All HCs had no history of neurological or psy-
chiatric disorders, sensorimotor impairment or cognitive
complaints, no abnormal anatomical findings by conventional
brain MRI, and had mini-mental state examination (MMSE)
scores of 28 or higher. All participants underwent a complete
physical and neurological examination, standard laboratory
tests, and neuropsychological assessments, which included the
MMSE, Montreal Cognitive Assessment (MoCA), Extended Scale
for Dementia (ESD), World Health Organization–University of
California–Los Angeles Auditory Verbal Learning Test (AVLT),
Clock Drawing Task (CDT), Activity of Daily Living Scale (ADL),
Functional Activities Questionnaire (FAQ), Hamilton Depression
Scale, and Hachinski Ischemic Score. The diagnosis of AD ful-
filled the new research criteria for possible or probable AD
(Dubois et al. 2007, 2010; McKhann et al. 2011). Of these cognitive
measures, MMSE, MoCA, and ESD are comprehensive cognitive
screeners that cover a wide range of cognitive functions, with
MMSE being one of the most influential standardized cognitive
state examination tools and screener of AD, MoCA screening for
dysfunctions of attention, executive function, memory, lan-
guage, visual, abstract thinking, structure calculation and direc-
tional force, and ESD testing the ability associated with
learning, attention, memory, calculation, abstraction, under-
standing, structure, language fluency, object use, and recogni-
tion. AVLT is commonly used to test events memory function.
CDT is used to test executive function. These cognitivemeasures
are frequently used in the studies of AD and higher scores indi-
cate better performance.Written informed consentwas obtained
from each participant, and this study was approved by the Med-
ical Research Ethics Committee of Xuanwu Hospital, Beijing,
China. The data of 2 AD patients (CDR = 0.5) and 3 HCs were dis-
carded due to the failure of imaging normalization (see Image
Preprocessing). The dataset has been used previously to study
seed-based functional connectivity in themedial and lateral par-
ietal subregions in AD (Wang, Xia, et al. 2013; Xia et al. 2014).
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A subset of the dataset (16 AD patients and 22 HCs) was also used
to study regional brain activity in AD (Wang, Yan, et al. 2011; Dai
et al. 2012). Clinical and demographic data of the remaining 70
participants are summarized in Table 1.

MRI Acquisition

All participants were scanned on a Siemens 3-T Magnetom
Sonata scanner (Siemens, Erlangen, Germany). Foam pads and
headphones were used to minimize head movement and scan-
ner noise. Functional images were collected axially using an
echo-planar imaging sequence: repetition time (TR)/echo time
(TE) = 2000 ms/40 ms, flip angle (FA) = 90°, field of view (FOV) =
240 × 240 mm2, matrix = 64 × 64, slices = 28, thickness = 4 mm,
voxel size = 3.75 × 3.75 × 4 mm3, gap = 1 mm, and bandwidth =
2232 Hz/pixel. Prior to the scan, the subjects were instructed to
keep their eyes closed but not fall asleep, relax their minds, and
move as little as possible during data acquisition. The scan lasted
for 478 s and thus included 239 functional volumes for each
subject. A simple questionnaire indicated that all of the subjects
had not fallen asleep during the scan. Three-dimensional T1-
weightedmagnetization-prepared rapid gradient echo (MPRAGE)
sagittal images were also obtained using the following sequence:
TR/TE = 1900 ms/2.2 ms, FA = 9°, inversion time = 900 ms, FOV =
256 × 256 mm2, matrix = 256 × 256, slices = 176, thickness = 1 mm,
and voxel size = 1 × 1 × 1 mm3.

Image Preprocessing

Unless otherwise stated, all functional imaging data preproces-
sing was carried out using Statistical Parametric Mapping
(SPM8, http://www.fil.ion.ucl.ac.uk/spm) and Data Processing
Assistant for Resting-State fMRI (DPARSF; Yan and Zang 2010).
Briefly, the first 10 functional volumes were discarded to allow
for stabilization of the initial signal and adaptation of the partici-
pants to the circumstances. The remaining fMRI images were
then corrected for acquisition time delay between slices and fur-
ther realigned to the first volume to correct for head motion. No
subject was excluded under a headmotion criterion of 3 mmand
3°. The individual T1-weighted images were coregistered to the
mean functional image after motion correction using a linear

transformation (Collignon et al. 1995) and were then segmented
into gray matter (GM), white matter, and cerebrospinal fluid tis-
sue maps with SPM’s a priori tissue maps as reference by using
a unified segmentation algorithm (Ashburner and Friston 2005).
The resultant GM, white matter, and cerebrospinal fluid images
were further nonlinearly registered into theMontreal Neurologic-
al Institute (MNI) spacewith the information estimated in unified
segmentation and then averaged across all subjects to create cus-
tom GM, white matter, and cerebrospinal fluid templates. Next,
the coregistered T1 images were segmented again with custom
tissue templates as reference images using the unified segmen-
tation algorithm (Ashburner and Friston 2005). Such a custom
template-based registration procedure allowed reducing the in-
accuracy of the spatial normalization of functional volumes
due to GM atrophy in the elderly population. We then applied
the transformation parameters estimated during unified seg-
mentation to the motion-corrected functional volumes and re-
sampled the transformational functional images to 3-mm iso-
tropic voxels that are the minimum spatial resolution capturing
cortical folding (Kiselev et al. 2003) and reflect neuronal patterns
of columnar grain (Kriegeskorte et al. 2010). The data of 5 subjects
(2 AD and 3 HCs) were excluded from further analysis because of
the failure of imaging normalization that might be caused by se-
vere GM atrophy or image artifacts. The normalized functional
images further underwent spatial smoothing with a 4-mm full
width at half maximum (FWHM) Gaussian kernel and removal
of linear trends. Temporal band-pass filtering (0.01–0.1 Hz) was
performed on the time series of each voxel using the Resting-
State fMRI Data Analysis Toolkit (Song et al. 2011) to reduce the
effect of low-frequency drifts and high-frequency physiological
noise (Biswal et al. 1995; Lowe et al. 1998). Finally, the nuisance
signals (6 head motion parameters, global signal, cerebrospinal
fluid, and white matter signals) were regressed out from each
voxel’s time course. The residuals were used for the following
resting-state functional connectivity analysis.

Nodal Functional Connectivity Strength Analysis

To identify the hub regions of the whole-brain network, we per-
formed a nodal functional connectivity strength (FCS) analysis as
follows. First, for each participant, we computed functional

Table 1 Demographic and neuropsychological data of AD patients and HCs

AD (n = 32) HC (n = 38) P-value

Age (years) 52–86 (71.25 ± 8.63) 50–86 (68.39 ± 7.78) 0.15a

Gender (M/F) 14/18 13/25 0.41b

Education (years) 5–16 (9.75 ± 3.14) 5–16 (9.95 ± 3.44) 0.80a

CDR 0.5 (n = 14), 1 (n = 18) 0 –

MMSE 10–25 (18.56 ± 3.99) 28–30 (28.63 ± 0.67) <0.001a

MoCA 8–19 (14.94 ± 3.23) 27–30 (28.63 ± 0.79) <0.001a

ESD 107–200 (155.33 ± 26.48) 180–248 (227.74 ± 15.68) <0.001a

AVLT 8–24 (14.81 ± 4.12) 39–52 (44.42 ± 2.74) <0.001a

CDT 3–8 (6.13 ± 1.43) 8–9 (8.71 ± 0.46) <0.001a

ADL 22–45 (30.41 ± 7.21) 20–22 (21.08 ± 0.78) <0.001a

FAQ 4–11 (6.25 ± 1.70) 0–2 (0.55 ± 0.76) <0.001a

HAMD 0–3 (1.06 ± 1.08) 0–3 (0.61 ± 1.00) 0.07a

HIS 0–3 (1.16 ± 0.77) 0–3 (1.13 ± 1.07) 0.91a

Note: Data are presented as the range of minimum–maximum (mean ± SD).

AD, Alzheimer’s disease; HC, healthy control; CDR, Clinical Dementia Rating; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; ESD, The

Extended Scale for Dementia; AVLT, World Health Organization–University of California–Los Angeles Auditory Verbal Learning Test; CDT, Clock Drawing Task; ADL,

Activity of Daily Living Scale; FAQ, Functional Activities Questionary; HAMD, Hamilton Depression Scale; HIS, Hachinski Ischemic Score.
aThe P-value was obtained by the two-sample two-tailed t-test.
bThe P-value was obtained by the two-tailed Pearson χ2 test.
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connectivities by estimating Pearson’s correlations between the
time series of any pairs of brain voxels, resulting in an individual
whole-brain functional connectivity matrix. This procedure was
constrained within a GM mask (Nvoxels = 57 766) generated by
thresholding (cutoff = 0.2) the mean GM probability map of all
70 subjects. Then, for a given GM voxel, i, we computed its FCS
using the following equation (Buckner et al. 2009; Zuo et al.
2012; Wang, Dai, et al. 2013):

FCSðiÞ ¼ 1
Nvoxels � 1

XNvoxels

j¼1;j≠i
zij; rij > r0 ð1Þ

where zij was the Fisher’s Z-transformed version of correlation
coefficient, rij, between voxel i and voxel j, and r0was a correlation
threshold that was used to eliminate weak correlations possibly
arising from noise (here, r0 = 0.2). We also assessed the effects of
different correlation thresholds on the main results, see “Valid-
ation analysis.” Notably, this FCS metric is referred to as the “de-
gree centrality” of a weighted network in graph theory (Buckner
et al. 2009; Zuo et al. 2012; Wang, Dai, et al. 2013). The GM voxels
with higher FCS values (>1 SD beyond the global mean) were de-
fined as brain hubs, which are usually assumed to play central
roles in the functional integrity of whole-brain networks. After
the above processing, we obtained a FCS map for each subject.
The spatial similarity of the FCS maps between groups was eval-
uated using Pearson’s correlation coefficient across voxels. Given
that the neighboring voxels were spatially dependent due to the
physiological correlations and the smoothing preprocessing, the
effective degree of freedom, dfeff, in the across-voxel correlation
analysis was corrected to estimate the P-values (Xiong et al.
1995; Liang et al. 2013):

d feff ¼
N

ðFWHMx × FWHMy × FWHMzÞ=v� 2 ð2Þ

where v was the nominal volume of a voxel (here, v = 3 × 3 ×
3 mm3) and N was the number of voxels used in the analyses
(here, N = 57 766). FWHMx, FWHMy, and FWHMz represent the
width of the Gaussian function along each of the 3 principal
axes of space smoothness, respectively. Furthermore, we com-
puted the reduced proportion of FCS, Prop(i), in the AD group rela-
tive to the HC group:

PropðiÞ ¼ FCSADðiÞ � FCSHCðiÞ
FCSHCðiÞ

× 100% ð3Þ

where FCSADðiÞ and FCSHCðiÞ represent the mean FCS values of
GM voxel i in the AD and HC groups, respectively. To further
examine between-group differences in FCS, a general linear
model (GLM) analysis was performed in a voxel-wise manner
with age and gender as covariates. The statistical significance
threshold was set at P < 0.05 and cluster size >2187 mm3

(i.e., 81 voxels), which corresponded to a corrected P < 0.05 for
multiple comparisons. This correction was confined within the
GMmask (size: 1 559 682 mm3) and performed by Monte Carlo si-
mulations (Ledberg et al. 1998) using the AFNI AlphaSim program
(http://afni.nimh.nih.gov/pub/dist/doc/manual/AlphaSim.pdf).

The between-group FCS difference analysis revealed regions
that are disrupted in patients with AD. To further determine
whether these regions showing themost significant group differ-
ences in FCS are those brainhubswith higher FCS,we generateda
mean FCS map in a healthy young adult group (n = 53) that was
obtained from a public test–retest reliability dataset (http://

fcon_1000.projects.nitrc.org/indi/CoRR/html/bnu_1.html), and
then computed the across-voxel spatial correlation with the be-
tween-group difference map. The correlation was computed
within conjunction of the voxel sets that were defined as brain
hubs (FCS >mean + 1 SD) in the healthy young group and those
exhibited significant differences in FCS between AD and HC
groups. The effective degree of freedom, dfeff, in the across-
voxel correlation analysis was again corrected to estimate the
P-value according to equation (2). Notably, the test–retest dataset
included 2 scanning sessions and the above processing was sep-
arately performed for each session. The test–retest dataset was
also used for the following reliability analysis of the FCS metric
(see the “Test–retest Reliability” section) and the details of the
data are shown in Supplementary Material.

The FCSmetric allows us to identify brain regions that exhibit
AD-related abnormalities in nodal functional connectivity. Two
questions remain to be further elucidated for these regions:
Exactly the connections with what regions contribute to the
nodal FCS abnormalities andhow regionswith FCS abnormalities
are topologically organized. To further address these questions,
we undertook a five-step procedure as follows.

1. For each regional cluster showing significant group differ-
ences in FCS, we defined a seed region of interest (ROI) as a
4-mm-radius sphere centered on the maximal peak voxel of
the cluster. Thus, we obtained 20 seed ROIs in total (see
Results).

2. For each seed ROI, we performed individual functional con-
nectivity analysis by correlating the mean time series of the
seed ROI with those of all GM voxels. A Fisher’s r-to-z trans-
formation was further applied to improve the normality of
the resulting correlation coefficients.

3. We used a GLM analysis to examine between-group differ-
ences in the functional connectivity maps of each seed ROI.
In this step, GLM analysis was performed on individual con-
nectivity maps with age and gender as covariates at P < 0.001
and cluster size > 243 mm3, which corresponded to a cor-
rected P < 0.05/20 (Bonferroni correction for 20 seed ROIs).
Notably, for each seed ROI, the group difference map was re-
stricted to positive functional connectivity maps in either the
HC or AD group. Next, we defined a 4-mm radius sphere cen-
tered at each peak voxel in the differencemaps as a target ROI.
This procedure resulted in 27 target ROIs (see Results), whose
functional connectivity with the seed ROIs differed signifi-
cantly between groups.

4. Based on the above-mentioned “spreading” of connectivity
analysis, we obtained 47 ROIs in total (20 seed ROIs and 27 tar-
get ROIs, without any spatial overlapping) in which AD
patients exhibited disrupted FCS or relevant functional con-
nectivity. To further ascertain how these regions showing
AD-associated dysconnectivity are topologically organized,
we generated a 47 × 47 correlation matrix for each subject by
computing the Pearson’s correlations between the time series
of any pair of ROIs.

5. For each group, we thresholded (r0 = 0.2) the mean correlation
matrix into aweightedmatrix and then performed amodular
analysis using a spectral optimization algorithm (Newman
2006) in the Brain Connectivity Toolbox (http://www.indiana.
edu/~cortex/connectivity.html). Moreover, we performed a
GLM analysis on individual Fisher’s Z-transformed version
of correlation matrices to identify connectivity differences
between the 2 groups. Age and gender were considered as
covariates. A false discovery rate procedure was used to cor-
rect for multiple comparisons. On the basis of these analyses,
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we categorized the connections showing significant group
differences into intramodule (within the same functional
modules) and intermodule (between different functional
modules) connections.

Connectivity Distance-Related FCS Analysis

Previous studies suggested that the FCS metric is strongly asso-
ciated with connectivity distance (i.e., Euclidean distance) be-
tween regions (Sepulcre et al. 2010; Liang et al. 2013; Liao et al.
2013). Thus, it would be important to examine whether AD-re-
lated changes in FCS are distance-dependent. However, there is
currently no definitive distance threshold in which a given func-
tional connectivity can be classified to be short- or long-range.
Therefore, in the current study, we calculated the Euclidean dis-
tance, Dij, as an approximate anatomical distance of functional
connectivity between voxel i and voxel j and then divided
whole-brain functional connectivity maps into 18 bins with
Euclidean distances binned into 10 mm steps, ranging from 0 to
180 mm (the longest distance between voxels in the GM mask).
For a given voxel, i, the FCS at the kth bin (k = 1, 2, . . . 18)was com-
puted as follows:

FCSði; kÞ ¼ 1
Nvoxels � 1

X
j≠i;j∈Dik

zij;

rij > r0;Dik ¼ fjj10 × ðk� 1Þ � Dij < 10 × kg
ð4Þ

where zij was the Fisher’s Z-transformed version of correlation
coefficient, rij, between voxel i and voxel j,Nvoxels was the number
of voxels in the GM mask (here, Nvoxels = 57 766), r0 was 0.2 as
mentioned above, and Dij was the Euclidean distance between
voxel i and voxel j. Thus, for each subject, a newFCSmapwas pro-
duced for each distance bin. To further examine between-group
differences of FCS at each bin, GLM analysis was performed
again in a voxel-wise manner with age and gender as covariates,
and multiple comparisons were corrected using Monte Carlo si-
mulations. Notably, the FCS maps in different distance bins con-
tained different numbers of GM voxels, so the multiple
comparison corrections were performed within the respective
masks (size range: 40 608–1 559 682 mm3). Finally, to obtain the
cutoff point of short- and long-range distances using the empir-
ical data rather than frequently employed arbitrary cutoff point
at 75 mm (Achard et al. 2006; He, Chen, et al. 2007), a hierarchical
clustering analysis was conducted to group the FCS maps of
neighboring bins with similar spatial connectivity patterns. In
this analysis, for each group, we computed the spatial correla-
tions of FCS between different bins as follows:

Rkl ¼
P

i∈Gkl
ðSik � SkÞðSil � SlÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i∈Gkl
ðSik � SkÞ2ðSil � SlÞ2

q ð5Þ

where Sik and Sil (i ∈ Gkl, Gkl is the overlapping of GMmasks under
the kth and lth bin) were the average FCS at voxel i for kth or lth
bin with means of Sk and Sl, respectively. After converting the
spatial correlation matrix to a dissimilarity matrix (i.e., 1-correl-
ation coefficient), we generated hierarchical cluster treeswith the
complete linkage clustering algorithm to hierarchical clustering
analysis.

FCS-Based Classification Analysis

To determine whether the FCSmetric could serve as a biomarker
for distinguishing individuals with AD from the HCs, we

performed a voxel-wise discriminant analysis based on the re-
ceiver operating characteristics curve approach (VDA-ROC). The
statistical significance of this analysis was assessed using non-
parametric permutation tests. Briefly, for each ROC classification,
the class labels (e.g., AD vs. HC) were randomly permutated
10 000 times. Each time, we obtained the area under the ROC
curve, and the 95th percentile points of the empirical distribution
were used as critical values in a one-tailed test of whether the ob-
served ROC curve area could occur by chance. The correction for
multiple comparisons was also performed using a Monte Carlo
simulation approach as described before. Notably, the discrimin-
ation analysis was also performed on short- and long-range FCS
maps, respectively.

Relationship Between FCS/Modular Metrics and
Cognitive Variables

To determine the relationship between nodal FCS and cognitive
measures (i.e., MMSE, MoCA, ESD, AVLT, and CDT), a voxel-by-
voxel GLM analysis was conducted in the AD group within the
GM mask after controlling for age and gender. In the GLM ana-
lysis, we also controlled for the level of education, which is
known to influence the performance on these test. Multiple com-
parisons were corrected using Monte Carlo simulations. In add-
ition, we also examined the relationship between the intra- or
intermodule connectivity with significant group differences
and the cognitive scores in the AD group.

FCS Analysis of Very Mild and Mild AD Groups

As mentioned before, the early-stage AD group included in this
study was heterogeneous, with 14 very mild AD patients (mean
age, 68.93 years, SD 8.96 years; CDR = 0.5) and 18mild AD patients
(mean age, 73.06 years, SD 8.16 years; CDR = 1). To further deter-
mine whether there were different FCS patterns between these
2 AD groups, we re-performed statistical comparisons of FCS
maps among the 3 groups (i.e., mild AD, very mild AD, and HC
groups) using a voxel-based, one-way analysis of covariance (AN-
COVA) with age and gender as covariates, followed by post hoc
two-sample t-tests. Multiple comparisons were corrected using
Monte Carlo simulations.

Validation Analysis

We evaluated whether our main results were influenced by GM
atrophy and different preprocessing/analysis strategies (includ-
ing the correlation types, correlation and connectivity density
thresholds, head motion correction, spatial smoothing, and glo-
bal signal removal). We also employed a public R-fMRI dataset to
evaluate the test–retest reliability of the FCS measure. The rele-
vant procedures are described as follows.

The Effects of GM Loss
Previous studies suggested that functional analysis results could
potentially be influenced by structural GM differences among
groups (He, Wang, et al. 2007; Oakes et al. 2007; Wang, Yan,
et al. 2011). To explore the possible confounding effect of GM at-
rophy, we performed a voxel-based morphometry analysis on
structural MRI images and took the GM density (i.e., unmodu-
lated images) as a covariate in the FCS statistical analyses. Briefly,
individual GM density maps in the standard spacewere obtained
by a unified segmentation algorithm as described previously.
After spatially smoothing with a 10-mm FWHMGaussian kernel,
voxel-wise GLM models were performed with age and gender as
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covariates. Statistical significance was set at P < 0.05 and cluster
size >12 663 mm3, which corresponded to a corrected P < 0.05.
Compared with the HC group, the AD group showed significant
GM loss in many brain regions, especially in the medial and lat-
eral frontal and parietal cortices and insula that exhibited AD-re-
lated disruption in FCS (see Results), indicating the necessity of
correcting the GM atrophy in the R-fMRI study. We thus per-
formed a voxel-by-voxel GLM analysis again to compare be-
tween-group differences in FCS by adding individual GM
density values as an additional covariate.

The Effects of Different Preprocessing/Analysis Strategies
(1) Correlation types. Given the controversies in the treatment of
negative correlations in R-fMRI network studies (Fox et al. 2009;
Murphy et al. 2009; Wang, Zuo, et al. 2011), we also performed
an FCS analysis including both positive and negative connections
(absolute values) to assess the stability of our findings. (2) Correl-
ation and connectivity density thresholds.While computing FCS,
we used a single correlation threshold of 0.2 to eliminate poten-
tially spurious correlations. To determine whether our main re-
sults depended on the choice of correlation threshold, we
recomputed FCS maps using 5 different correlation thresholds
(0, 0.1, 0.3, 0.4, and 0.5). Additionally, we also recomputed the
FCS maps and performed corresponding statistical analyses
under various network densities or sparsities (1%, 5%, 10%, and
20%), ensuring the same number of connections across subjects.
(3) Head motion. Recent literature has suggested that head mo-
tion has a confounding effect on functional connectivity analysis
(Power et al. 2012a, 2012b; Van Dijk et al. 2012; Satterthwaite et al.
2013; Yan et al. 2013). In this study, we did not find significant dif-
ferences in head motion between the 2 groups [two-tailed two-
sample t-test: P = 0.33 for translational, P = 0.11 for rotational, P =
0.66 for mean framewise displacement of Jenkinson (Jenkinson
et al. 2002)]. Nonetheless, to exclude any possible effects of
head motion, 2 analysis strategies were performed: (a) We re-
analyzed FCS by including mean framewise displacement as an
additional covariate (Yan et al. 2013). (b) We re-performed a
‘scrubbing’ procedure on the preprocessed images (Power et al.
2012a; Yan et al. 2013). For each subject, R-fMRI volumes were
first censored based on a criterion of framewise displacement
>0.2 mm, and the FCS analysis was then re-analyzed using
these censored R-fMRI data. (4) Spatial smoothing. Given that
spatial smoothing in the preprocessing steps might introduce
artificial local correlations between voxels that were unrelated
to their functional connections, we validated our major results
without this smoothing preprocessing. (5) Global signal removal.
Currently, whether global signal should be removed during R-
fMRI preprocessing is controversial. Several previous studies
have suggested that global signal is associated with non-neuron-
al activity such as respiration and should be removed (Fransson
2005; Birn et al. 2006; Chang and Glover 2009; Fox et al. 2009).
However, this processing introduces widespread negative func-
tional connectivities and thus may alter the intrinsic correlation
structure of brain networks (Murphy et al. 2009; Weissenbacher
et al. 2009). To explore the effects of global signal removal on
our results, we re-analyzed our data without regressing out the
global signal.

Test–Retest Reliability
To validate the test–retest reliability of the nodal FCS metric, we
repeated the principle analyses with a public test–retest dataset
(http://fcon_1000.projects.nitrc.org/indi/CoRR/html/bnu_1.html).
Briefly, the dataset consists of two approximately 6.5 min R-fMRI
scans that were acquired from 53 healthy young adults (male/

female: 28/25; age: 19–30 years) who completed 2 MRI scan ses-
sions within an interval of approximately 6 weeks (40.94 ± 4.51
days). The R-fMRI preprocessing and FCS calculationwere all per-
formed using the same procedures described above. We com-
puted the intraclass correlation coefficient (Shrout and Fleiss
1979) to quantify the test–retest reliability of the FCS maps. The
details of the data are presented in Supplementary Material.

Results
Whole-Brain Functional Hubs and Between-group
Differences Measured by FCS

TheHC grouphad an average of 16.35% of network density (range
= 10.37–28.79%; SD = 3.53%) and the AD group had an average of
15.69% of network density (range = 11.20–21.25%; SD = 2.07%).
There was no significant difference in network density between
the 2 groups (P = 0.23). For the HC group, we observed that the
brain hubs (i.e., the regions with higher FCS) weremainly distrib-
uted in several default-mode (DMN) regions including the poster-
ior cingulate gyrus/precuneus (PCC/PCu),medial prefrontal gyrus
(MPFC), and inferior parietal cortex (IPL). The insula, dorsal lateral
prefrontal cortex (dlPFC), dorsal anterior cingulate cortex (dACC),
postcentral gyrus (PoCG), supplemental motor area (SMA), and
thalamus were also among the functional hubs (Fig. 1A and Sup-
plementary Fig. 1). This pattern was largely compatible with pre-
vious R-fMRI studies in healthy young adults (Buckner et al. 2009;
Liang et al. 2013; Tomasi et al. 2013). Visual inspection indicated
that the spatial distributions of FCS in the AD group were very
similar to those of the HC group, in spite of different strengths
(Fig. 1A and Supplementary Fig. 1). The correlation analysis
across voxels confirmed the significant spatial similarity of FCS
maps between the 2 groups (r = 0.76, P < 0.0001, dfeff = 24 368,
Fig. 1B). Further between-group comparison analysis revealed
that, compared with the HC group, the AD patients exhibited sig-
nificantly decreased FCSmainly in the PCC/PCu, MPFC, IPL, PoCG,
insula, dACC/SMA, dlPFC, and thalamus (corrected P < 0.05,
Fig. 1C and Table 2). Notably, for most of these regions, the FCS
values were reduced up to 20% in the AD group relative to the
controls (Fig. 1D). To further explore if the brain regions showing
higher FCS in the healthy population were more vulnerable to
AD, we computed the spatial correlation between the FCS values
of hub regions in theyoung healthy adult group and the between-
group significant difference map (Z scores). High correlations
were found between the 2 maps (r =−0.22, P < 0.0001, dfeff = 1576
for session 1; r = −0.17, P < 0.0001, dfeff = 1576 for session 2;
Fig. 1E), suggesting that some hub regions of the brain networks
are preferentially affected by AD.

Disrupted Hub-Related Functional Connectivity in AD

According to the above-mentioned results, we defined 20 seed
ROIs showing AD-related decreases of FCS (Fig. 2 and Table 2).
Furthermore, we used a “spreading” connectivity analysis to ob-
tain 27 target ROIs showing AD-related decreases of functional
connectivities with these seed ROIs (Fig. 2 and Table 3). As an ex-
ample, wemapped the functional connectivity pattern of the PCC
seed ROI, a 4-mm-radius sphere centered on the maximal peak
voxel: x, y, z = [0, −54, 27] mm. For both the HC and AD groups,
the PCC ROI was positively correlated with theMPFC, IPL, and lat-
eral temporal gyrus (Fig. 2). The PCC functional connectivity with
the MPFC was significantly lower in the AD than the HC group
(corrected P < 0.05/20, Fig. 2), and thus, the MPFC was considered
a target ROI. On the basis of these 47 ROIs, we generated a
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correlation matrix with 47 rows and 47 columns for each group
(Fig. 3A) and further decomposed them into 3 major modules
(HC: Qmax = 0.471, Z-score = 5.587; AD: Qmax = 0.540, Z-score =
1.365): the DMN, the salience network (SN), and the executive-
control network (ECN; Fig. 3B and Supplementary Fig. 2). Notably,
the modular structure of the HC group was highly similar to that
of the AD group (Supplementary Fig. 2). Furthermore, we found
that 60 ROI–ROI functional connectivities exhibited AD-related
decreases (q < 0.05, false discovery rate correction), categorized
as intramodule (53/60, 88.3%) and intermodule connections (7/
60, 11.7%; Fig. 3C). These intramodule disconnections primarily
belonged to the ECN (22/60, 36.6%), followed by the SN (19/60,
31.7%) and the DMN (12/60, 20%). Intermodule disconnections
were located between the SN and ECN. Only one connection—be-
tween the leftmiddle occipital gyrus and the left calcarine fissure
and surrounding cortex—exhibited a significant increase in the
AD group relative to the HC group.

Distance-Dependent FCS Patterns and AD-Related
Abnormalities

To understand the distance-dependent FCS results, we consid-
ered the above-mentioned FCS as a full-range FCS metric.

Figure 4A shows the within- and between-group FCS maps for
every connectivity distance studied. We noted that the FCS
maps (both the within- or between-group FCS results) showed
similar patterns at the neighboring distance bins, but were very
different between very short and long distances. For example,
both groups exhibited higher FCS in the visual cortex and lower
FCS in the IPL at the 30–40 mm distance, but the pattern was
inversed at the 120–130 mm distance; the between-group differ-
ences results showed decreased FCS inADwere primarily located
in the thalamus at the 30–40 mm distance, but in the PCC/PCu
and MPFC at the 120–130 mm distance. Notably, the most signifi-
cant AD-related FCS decreases appeared in the 100–130 mm
range (Fig. 4B), suggesting that AD was mainly associated with
longer distance disconnections. Additionally, we observed that
several regions exhibited higher FCS in the AD group, for ex-
ample, in the left fusiform gyrus at the 0–20 mm range and in
the left intraparietal cortex at the 30–50 mm range (Fig. 4A,B).

We further explored the spatial similarity of the mean FCS
patterns at different distances. Using a hierarchical clustering
analysis, we classified the 18 FCS bins into 2 bins: 0–90 mm
(short-range FCS) and 90–180 mm (long-range FCS; Fig. 4C). The
clustering results were identical for the HC and AD groups. For
each group, the short-range hubs (0–90 mm) weremainly located

Figure 1. Within- and between-group FCS maps. (A) Mean FCS maps within HC and AD groups. (B) Scatter plot showing the across-voxel relationship between the mean

FCSmaps of the 2 groups. (C) Z-statistical differencemaps between the 2 groups. (D) The reduced proportion of FCS in the AD group relative to the HC group. Notably,most

of the regions showing AD-related changes in FCSwere up to 20% lower in AD than in the control group. (E) Scatter plot showing the across-voxel relationship between the

FCS values of hub regions in a healthy young adult group and the Z-statistical difference map. Notably, the correlation analysis was performed within a set of GM voxels

that were considered hubs in the healthy young group and simultaneously showed significant differences between the AD and control groups.We resampled the FCS and

Z-values into a Gaussian distribution, respectively: a mean of 0.05 and a standard deviation of 0.01 dimensionless units for FCS values, a mean of −3 and a standard

deviation of 0.2 dimensionless units for Z-values. The FCS values were mapped on the cortical surface by using in-house BrainNet Viewer (Xia et al., 2013). FCS,

functional connectivity strength; HC, healthy control; AD, Alzheimer’s disease.
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in the PCC/PCu, MPFC, insula, dACC/SMA, sensorimotor, and vis-
ual cortices, whereas the long-range hubs (90–180 mm) were
mainly located in the PCC/PCu, MPFC, IPL, and dlPFC (Fig. 4D).
Notably, both the short- and long-range hub regions exhibited
AD-related decreases in FCS (corrected P < 0.05, Fig. 4D).

Classification Analysis Based on Full-, Short-, and
Long-Range FCS

Using the VDA-ROC analysis approach, we showed the discrim-
inative ability of full-, short-, and long-range FCS metrics (cor-
rected P < 0.05, Fig. 5). Interestingly, the brain hubs identified
previously (Figs 1A and 4D, and Supplementary Fig. 1) exhibited
a high power in distinguishing individuals with AD from the
HCs, regardless of physical distance. Importantly, the PCC/PCu
exhibited the highest classification power, with the area under
the curve, sensitivity, and specificity of the ROC of 80% (95% con-
fidence intervals: 70–90%), 84% and 66% for full-range FCS
(Fig. 5A); 77% (95% confidence intervals: 65–87%), 81% and 66%
for short-range FCS (Fig. 5B); and 82% (95% confidence intervals:
72–92%), 72% and 82% for long-range FCS (Fig. 5C), respectively.

Correlations Between the FCS/Modular Metrics and
Cognitive Performance in AD

Functional Connectivity Strength
We generated the voxel-wise correlationmaps between the full-,
short-, and long-range FCS and behavior variables (i.e., MMSE,
MoCA, ESD, AVLT, and CDT) in the AD group (corrected P < 0.05,
Fig. 6). (1) For MMSE, there were positive correlations predomin-
antly in the IPL with full-range FCS; in the MPFC, SMA and visual
cortex with short-range FCS; and in the right PCC/PCu, IPL and
dlPFC with long-range FCS. (2) For MoCA, there were positive cor-
relations in the MPFC with full- and short-range FCS, and in the
left IPLwith long-range FCS. Additionally, we also observed nega-
tive correlations in the ventral part of MPFC and supramarginal
gyrus with short-range FCS. (3) For ESD, we did not find any sig-
nificant correlationswith FCS values. (4) For AVLT, we found posi-
tive correlations in the PCC/PCu with full- and short-range FCS

and no correlations with long-range FCS. (5) For CDT, there
were positive correlations in the MPFC with short-range FCS,
and no significant correlations with full- and long-range FCS.

Modular Connections
In the AD group, the mean functional connectivity within the
ECN exhibited a positive correlation (r = 0.49, P = 0.0065) with the
CDT scores. The mean functional connectivity between the SN
and ECN positively correlated with the MoCA (r = 0.38, P = 0.045)
and CDT (r = 0.41, P = 0.028) scores, respectively.

In summary, AD patients with lower FCS in the DMN regions
(e.g., PCC/PCu, MPFC, and IPL) or lower functional connectivity
between SN and ECN had lower scores in comprehensive cogni-
tive tests (MMSE or MoCA); those with lower FCS in the PCC had
impaired events memory function (lower scores on AVLT); those
with lower FCS in the MPFC or lower functional connectivity
within the ECN or between SN and ECN had compromised execu-
tive function (lower scores on CDT).

Disrupted Hub-Related Functional Connectivity with
AD Progression

Relative to theHC group, both 2ADgroups showed commonly de-
creased full-range FCS in the PCC/PCu, MPFC, IPL, and insula
(Fig. 7). Compared with the very mild AD group with CDR 0.5,
the mild AD group with CDR 1 displayed greater reductions of
FCS primarily in the PCC/PCu and IPL. These results indicated
that the 2 AD groups exhibited spatially similar patterns of FCS
disruptions but to different extents in several hub regions (e.g.,
PCC/PCu and IPL). Both short- and long- range FCS analyses
yielded similar results (Fig. 7).

Validation Results

We assessed the effects of GM atrophy and different preproces-
sing/analysis strategies (the correlation types, correlation and
connectivity density thresholds, head motion correction, spatial
smoothing, and global signal removal) on our main findings as

Table 2 Regions showing FCS differences between the AD patients and HCs

Brain regions BA Volume (mm3) MNI coordinates (mm) Z-score

x y z

PCC/PCu 31/7/23 10 206 0 −54 27 −4.13
Left IPL/PoCG/PreCG/SMG 40/2 9882 −66 −27 21 −4.07
Right SPG/PoCG 40 5346 18 −45 63 −3.89
MPFC/ACC/SMA 32/10 17 145 3 54 3 −3.89
Right MFG/SFG 6 3024 27 18 54 −3.77
Right ALC 19 6048 18 −54 −15 −3.76
Right INS/STG/SMG 13/39/47/22 17 847 39 12 6 −3.74
Left INS 13 3807 −39 0 −3 −3.60
Right MFG 9/10 5103 39 39 18 −3.35
Left ALC/PLC N/A 4050 0 −54 −51 −3.13
Thalamus N/A 3645 3 0 3 −3.12
Left HES/INS 13 2322 −36 −24 6 −3.05
Left MTG 39 2997 −54 −57 18 −2.95

BA, Brodmann’s area; x, y, z, coordinates of primary peak locations in theMNI space; Z, statistical value of peak voxel showing FCS differences between the 2 groups; PCC/

PCu, posterior cingulate cortex/precuneus; IPL/PoCG/PreCG/SMG, inferior parietal lobule/postcentral gyrus/precental gyrus/supramarginal gyrus; SPG/PoCG, superior

parietal gyrus/postcentral gyrus; MPFC/ACC/SMA, medial prefrontal cortex/anterior cingulate cortex/supplementary motor area; MFG/SFG, middle frontal gyrus/

superior frontal gyrus; ALC, anterior lobe of cerebellum; INS/STG/SMG, insula/superior temporal gyrus; PLC, posterior lobe of cerebellum; HES, Heschl gyrus; MTG,

middle temporal gyrus.

P < 0.05, corrected for multiple comparisons.
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well as the test–retest reliability of the nodal FCS metric. (1) The
effects of GM loss. We observed that the AD patients showed
widespread GM atrophy, with the most significant loss occurring
bilaterally in the PCC/PCu, MPFC, IPL, medial temporal lobe, and
insula (Fig. 8A). After taking the GM atrophy into account, we still
observed the AD-related FCS decreases in the PCC/PCu, MPFC,
and IPL (Fig. 8A), which was largely consistent with the main re-
sults without the GM correction (Fig. 1C). (2) The effects of correl-
ation type. We re-generated the FCS maps using absolute
correlation values including both positive and negative connec-
tions, and found that the main results preserved. For each
group, the correlation analysis across voxels also confirmed a
high spatial similarity between the FCS maps using the positive
correlation and the FCS maps using the absolute correlation
(rs > 0.99). The disrupted regions were mostly similar (spatial
correlation, r = 0.94), except for the left insula and thalamus (Sup-
plementary Fig. 3A). (3) The effects of correlation thresholds
(r0 = 0, 0.1, 0.3, 0.4, and 0.5) and connectivity density (density = 1%,
5%, 10%, and 20%).We found that the FCSmaps of each group and
the between-group difference maps under different thresholds
(Supplementary Figs 3 and 4) were similar to our main results
(Fig. 1). Notably, decreased FCS values in patients with AD were
found in the PCC/PCu andMPFC regardless of different threshold
values and thresholding approaches. (4) The effects of head mo-
tion. Using both the statistical analysis accounting for mean fra-
mewise displacement at the group-level (Yan et al. 2013; Fig. 8B)
and the ‘scrubbing’ procedure in preprocessed images (Power
et al. 2012a; Yan et al. 2013), we found that the main results in
the PCC/PCu, MPFC, and IPL were not affected (Fig. 8B). Note
that in this scrubbing analysis, to have sufficient time points
for stable results, subjects with ≤5 min of data remaining after
censoring were excluded from the analysis (8 AD patients and

11 HCs were excluded by this criterion; 51 of 70 subjects re-
mained). (5) The effects of spatial smoothing in image preproces-
sing. Without spatial smoothing in image preprocessing, we
observed significant group differences in the PCC and thalamus
(Supplementary Fig. 5A). The between-group FCS differences in
the MPFC and insula also survived the height threshold but not
the extent threshold (1323 mm3). Given that the spatial smooth-
ingmight impact distance-related FCS results, we also examined
the distance-related FCS pattern without smoothing in the pre-
processing. The between-group FCS differences at distance be-
tween 0 and 10 mm (Supplementary Fig. 5B) were similar to
those in the main analyses at this distance range (Fig. 4A), indi-
cating that the smoothing procedure did not influence our
main findings at the short distance. Notably, the significant be-
tween-group FCS differences were also observed in longer dis-
tances (e.g., 90–130 mm), but the number of voxels showing
group differences decreased without the smoothing (Supple-
mentary Fig. 5B). (6) The effects of global signal removal. Without
global signal removal, we observed that the AD group showed sig-
nificantly decreased FCS in the PCC/PCu, MPFC, insula, and thal-
amus (Fig. 8C), whichwas largely consistent with our resultswith
global signal removal. However, the lateral parietal cortices ex-
hibited non-significant results without global signal removal.
(7) Test–retest reliability. Visually, the spatial patterns of nodal
FCS maps were highly similar between the 2 sessions. Pearson’s
correlation analysis revealed high correlation coefficient be-
tween the FCS maps in the 2 sessions (r = 0.97, dfeff = 28 098, Sup-
plementary Fig. 6). The test–retest reliability map showed
spatially non-homogeneous pattern across the brain: A large
amount of hub regions, including the medial and lateral frontal
and parietal cortex, showed fair-to-good test–retest reliability (in-
traclass correlation coefficient above 0.4).

Figure 2. Definitions of seed and target ROIs. The left panel indicates the locations of the seed (cyan spheres) and target ROIs (magenta spheres). The magenta nodes

outside of the brain are the regions of cerebellum. As an example, the right panel shows the mean functional connectivity maps of the PCC seed ROI (a 4-mm radius

sphere centered on the maximal peak voxel: x, y, z = [0, −54, 27] mm) within the HC and AD groups and the Z-statistical differences between the 2 groups. Notably, the

PCC showed significant group differences in the MPFC, which was considered a target ROI. The details of the 20 seed and 27 target ROIs are presented in Table 3. PCC,

posterior cingulate cortex; MPFC, medial prefrontal cortex; HC, healthy control; AD, Alzheimer’s disease.

Brain Network Hubs in AD Dai et al. | 3731
D

ow
nloaded from

 https://academ
ic.oup.com

/cercor/article-abstract/25/10/3723/390649 by Beijing N
orm

al U
niversity Library user on 07 January 2019

http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu246/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu246/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu246/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu246/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu246/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu246/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu246/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu246/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu246/-/DC1


Discussion
Using R-fMRI and graph-based network analysis, we showed
disrupted functional connectivity patterns in AD. Our main find-
ings are as follows: (1) AD selectively disrupted network hub re-
gions with higher FCS, involving the PCC/PCu, MPFC, IPL,
insula, and thalamus. Importantly, this disruption was connect-
ivity distance-dependent; (2) AD mainly disrupted within-mod-
ule connections in the DMN, SN, and ECN and inter-module
connections between the SN and ECN; and (3) disrupted network
hub connectivity significantly correlated with patients’ cognitive
performance and distinguished individuals with AD from the
HCs with high sensitivity and specificity.

Disrupted Brain Network Hubs in AD

An emerging feature of the connectional architecture of the
human brain is that certain areas, known as hubs, act as way sta-
tions for information processing by connecting distinct, func-
tional specialized systems (Achard et al. 2006; Sporns et al.
2007). In this study, we found that the functional hubs in the
HC group were located primarily in the DMN regions, dlPFC, thal-
amus, and insula, consistent with previous functional network
studies (Buckner et al. 2009; Tomasi and Volkow 2010; Zuo et al.
2012; Liang et al. 2013; Wang, Dai, et al. 2013). We noted that a
similar hub distribution existed in the AD group, suggesting a
relative preservation of the crucial roles played by these hubs.
However, the patients showed themost significant FCS decreases
inmanyhub regions, suggesting that specific brain hubsmight be
preferentially targeted by AD pathology. This was further evi-
denced by the high negative correlation between the FCS maps
in the healthy young adults and group difference maps. Based
on meta-analyses of published structural MRI data, Crossley
et al. (2014) found that the GM lesions in ADweremainly concen-
trated in highly connected brain hubs such as the medial tem-
poral and parietal regions, providing further support for our
findings. The DMN regions, the core components of functional
hubs, are involved in a variety of function processing, including
episodic memory (Cabeza et al. 2002; Buckner 2004), a major cog-
nitive domain impaired in early AD. A number of previous R-fMRI
studies have reported abnormal spontaneous activity in the DMN
in AD (Greicius et al. 2004; Wang, Zang, et al. 2006; Jones et al.
2011; Brier et al. 2012) and in the prodromal stage of AD—mild
cognitive impairment (Sorg et al. 2007; Hedden et al. 2009). Be-
yond the DMN regions, the AD patients also exhibited decreased
FCS in the dlPFC, insula, and thalamus. The dlPFC plays crucial
roles inmany cognitive tasks including episodicmemory (Murray
and Ranganath 2007), working memory, and executive function
(Curtis andD’Esposito 2003); abnormal dlPFC functional connect-
ivity has been observed in individuals at risk for AD (Liang et al.
2011). The insula is involved in somatosensation, interoception,
motivation, and the maintenance of homeostasis (Deen et al.
2011). Previous studies have shown that the insula exhibits GM
atrophy (Karas et al. 2003; Honea et al. 2009) and functional dis-
connection (Wang et al. 2007) in AD. The thalamus is a key region
for integrating neural activity from widespread neocortical in-
puts and outputs (Postuma andDagher 2006), and abnormal thal-
amic functional connectivity has been demonstrated in AD
(Sanz-Arigita et al. 2010). Thus, these AD-related FCS decreases
in specific brain hubs provide further support for network dys-
function in this disease.

Additionally, we also observed decreased FCS in several sen-
sorimotor regions (PreCG, PoCG, and SMA). A structuralMRI study
has demonstrated a gradual loss of GM in primary sensorimotor

Table 3 Forty-seven ROIs

ROIs MNI coordinates (mm)

x y z

PCC 0 −54 27
Left PreCG −51 6 31
Left IPL −57 −26 46
Left SMG −66 −27 21
Right IPL 51 −31 56
Right SPG 18 −45 63
Right SMA 3 −5 65
Right ACC 1 19 26
Right MPFC 3 54 3
Right MFG 27 18 54
Right ALC 18 −54 −15
Right STG 56 −56 21
Right SMG 57 −17 20
Right INS 39 12 6
Left INS −39 0 −3
Right MFG 39 39 18
Left ALC −12 −65 −11
Right THA 3 0 3
Left HES −36 −24 6
Left MTG −54 −57 18
Left SFG −15 60 9
Left ITG −54 −63 −12
Left MOG −30 −75 30
Left ANG −33 −51 36
Left IPL −51 −42 54
Left IFGtriang −36 30 12
Left SPG −24 −72 48
Right IPL 57 −30 51
Right PoCG 42 −30 42
Left PUT −30 −9 12
Left PCu −12 −48 57
Left ORBsup −12 45 −12
Left PCL −36 −72 −45
Left PCL −30 −60 −39
Left CAL −15 −60 15
Left INS −42 6 −3
Left INS −33 21 9
Right MTG 66 −39 9
Right IFGoperc 54 12 12
Left IFGoperc −57 12 15
Right SMG 69 −21 36
Right MFG 42 0 51
Right MFG 27 36 27
Right MFG 30 30 42
Right MFG 33 18 48
Right MFG 27 27 48
Right STG 60 −12 3

Note: Bold text indicates the 20 seed ROIs derived from group FCS analysis and

others indicate 27 target ROIs showing AD-related functional connectivity

differences with seed ROIs.

x, y, z, coordinates of primary peak locations in the MNI space; PCC, posterior

cingulate cortex; PreCG, precental gyrus; IPL, inferior parietal lobule; SMG,

supramarginal gyrus; SPG, superior parietal gyrus; SMA, supplementary motor

area; ACC, anterior cingulate cortex; MPFC, medial prefrontal cortex; MFG,

middle frontal gyrus; ALC, anterior lobe of cerebellum; STG, superior temporal

gyrus; SMG, supramarginal gyrus; INS, insula; THA, thalamus; HES, heschl

gyrus; MTG, middle temporal gyrus; SFG, superior frontal gyrus; ITG, inferior

temporal gyrus; MOG, middle occipital gyrus; ANG, angular gyrus; IFGtriang,

inferior frontal gyrus, triangular part; PoCG, postcentral gyrus; PUT, putamen;

PCu, precuneus; ORBsup, superior frontal gyrus, orbital part; PCL, posterior lobe

of cerebellum; CAL, calcarine fissure and surrounding cortex; IFGoperc, inferior

frontal gyrus, opercular part.
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cortex that mirrors the progression of AD severity (Frisoni,
Prestia, et al. 2009). Several R-fMRI studies found that the sensori-
motor regions were functionally affected in early AD (Brier et al.
2012; Wang, Xia, et al. 2013; Xia et al. 2014). However, AD patients
included in this study did not report any clinically evident motor
deficits. The discrepancy between functional disconnection in
the sensorimotor system and normal motor behaviors in the

patients could be explained as brain reserve: The brain has a buf-
fer or reserve capacity to withstand a degree of change brought
about by aging and disease (Staff 2012). The biomarker model
that relates disease stage to AD suggests that the synaptic dys-
function and brain structural loss are earlier than the decline of
clinical performances (Jack et al. 2010; Sperling et al. 2011), pro-
viding further support for our findings.

Figure 3.Modular analysis of the brain functional network. (A) Correlationmatrices among 47ROIs are shown for theHC (left panel) andAD (right panel) groups. (B) Surface

(left panel) and topological (right panel) representations of themodular architecture of the brain networks in the HC group. Three modules were identified, the DMN (red

colors), SN (green colors) and ECN (blue colors). The red nodes outside the brain are the regions of cerebellum. Thewithin-module nodes and edges aremarked in the same

color. The intermodule connections aremarked with black lines. Notably, 4 nodes (2 inmagenta and 2 in yellow) on the surfaces did not belong to the DMN, SN, or ECN in

the modular detection and therefore were not shown in the right panel. (C) Matrix (left panel) and topological (right panel) representations of AD-related functional

connectivity decreases. Blue and cyan lines represent AD-related decreases in inter- and intramodule connections, respectively. Notably, between-group statistical

comparisons were restricted to positive correlations of either the HC or AD group. DMN, default-mode network; SN, salience network; ECN, executive-control network;

HC, healthy control; AD, Alzheimer’s disease.
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Many brain hubs are preferentially affected in AD, which
could be explained by 2 lines of views. First, previous studies
have found that the spatial pattern of typical hub regions in

young healthy subjects strongly overlapswith high Aβ deposition
in AD (Buckner et al. 2009) and cortical hubs are disconnected in
non-demented subjects with elevated Aβ burden (Drzezga et al.

Figure 4. Distance-dependent within- and between-group FCS maps. (A) Within-group mean FCS maps and between-group Z-statistical difference maps in different

distance bins. (B) The number of voxels showing significant group differences in FCS in different distance bins. (C) Hierarchical clustering analysis based on the spatial

correlation map of FCS under different distance bins for the HC group. (D) Within-group mean FCS maps and between-group Z-statistical difference maps for short- and

long-range FCS. FCS, functional connectivity strength; HC, healthy control; AD, Alzheimer’s disease.
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2011), suggesting that increasing Aβ burden leads to functional
disconnection of brain hubs. These observations conform with
the Aβ-cascade hypothesis of AD that neurotoxic Aβ aggregation
may lead to synaptic dysfunction and eventually synaptic loss
(Hardy and Selkoe 2002; Selkoe 2008). Alternatively, a growing
number of studies suggest that continuously high levels of spon-
taneous activity that are associated with high metabolismmight
lead to amyloid deposition (Bero et al. 2011; Walker and Jucker
2011). Therefore, the hub regions with higher connectivity and
metabolism level might have a greater chance to have amyloid
deposition. In supportive of this theory, de Haan, Mott, et al.
(2012) used a computational modeling approach to demonstrate
that hubs are more vulnerable to activity-dependent degener-
ation. In summary, there may be a bidirectional relationship be-
tween functional connectivity and Aβ deposition in AD; such a
relationship has been demonstrated in mouse brain models
(Bero et al. 2012). This bidirectional relationship might underlie
why hub regions are preferentially affected by AD pathology.

We used R-fMRI to show AD-related network dysfunction.
Notably, functional disruption in AD was also demonstrated
using other neurophysiological techniques such as electro-
encephalograph or magnetoencephalograph (Stam et al. 2007,
2009; de Haan, van der Flier, et al. 2012). Specifically, using mag-
netoencephalograph data, Stam et al. (2009) examined functional
connectivity changes in the resting-state brain networks in pa-
tients with AD, and found that highly connected network hubs
tend to be disrupted in the patients. Also using magnetoence-
phalograph data, de Haan, van der Flier, et al. (2012) observed
that the eigenvector centrality of the brain functional networks
was the highest in the parietal regions and was disrupted in pa-
tients with AD. Convergent to the current study, these neuro-
physiological evidences also pointed out the notion that
specific brain hubs are preferentially targeted by AD. Given the
different temporal and spatial resolutions andneuronalmechan-
isms among electroencephalograph, magnetoencephalograph,

and R-fMRI, the combination of these different techniques
would be important to map a comprehensive picture of the
underlying loss of network connections in AD.

Disrupted Hub-Related Connectivity and Modular
Integrity in AD

We further identified AD-associated changes in the hub-relevant
connectivity network. This network contains 3 main compo-
nents: the DMN, the SN, and the ECN. The connections attacked
by AD are involved in both intramodule connectivity within
each component and intermodule connectivity between the SN
and ECN. This finding is comparable with previous reports of
disrupted connectivity within the DMN (Greicius et al. 2004;
Brier et al. 2012), SN (Brier et al. 2012; Chen et al. 2013), and
ECN (Brier et al. 2012; Li et al. 2012) in AD. Of note, 2 previous
studies also reported increased connectivity within the SN
(Zhou et al. 2010; Agosta et al. 2012). This discrepancy could be at-
tributed to the different functional connectivity approaches: the
2 previous studies used independent component analysis, which
identifies sets of brain regions that are separable on the basis of
statistical patterns in their dynamic time series, whereas our dir-
ectly identified intrinsic modules of brain networks and further
examined functional connectivity patterns within modules.
We also observed decreased connections between the SN and
ECN. The SN is thought to play a role in recruiting relevant
brain regions for the processing of sensory information (Seeley
et al. 2007; Palaniyappan and Liddle 2012), and the ECN is related
to the maintenance and manipulation of information and deci-
sion making in the context of goal-directed behavior (Bunge
et al. 2001; Koechlin and Summerfield 2007). Therefore, we specu-
late that SN–ECN disconnection might lead to decreased sen-
sory information integration, which could further accounted for
the cognitive deficits in AD such as impaired judgment and
disorientation.

Figure 5. VDA-ROC analysis results based on the full-, short- and long-range FCS maps. The upper panel shows VDA-ROC analysis of full-range (A), short-range (B), and

long-range (C) maps. The lower panel plots the ROC curves at the highest classification power location (i.e., PCC/PCu). FCS, functional connectivity strength; VDA-ROC,

voxel-wise discriminant analysis based on the receiver operating characteristics curve approach.
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Network Hubs, Connectivity Distance, and Diagnostic
Biomarkers

Disparate spatial patterns of short- versus long-range functional
connections have been reported previously (Sepulcre et al. 2010;
Liang et al. 2013). In the present study, long-range functional
hubs were mainly located in the PCC/PCu, MPFC, IPL, and lateral
frontal and temporal cortices, and these hubs exhibited signifi-
cant decreases in long-range FCS in AD. These regions are in-
volved in high-level cognitive functions such as episodic
memory, executive controls, integrity of sensory information,
and decision making, which are all impaired in AD. Previous
studies have suggested that the long-range connections provide
quick links between remote brain regions in the network (Achard
et al. 2006) and play crucial roles in supporting human cognitive
function by traveling across multiple modules to allow the dis-
tant hubs to act as connectors for information integration to sup-
port human cognitive function (He et al. 2009; Bullmore and
Sporns 2012). Previous studies have reported AD-related disrup-
tions in some long-distance connections involving the PCC/

PCu–MPFC and bilateral homologous regions (Delbeuck et al.
2003; Stam et al. 2007; He et al. 2008; Sanz-Arigita et al. 2010;
Liu et al. 2013). Therefore, we speculate that these long-range
hub abnormalitiesmight cause disrupted functional integrity be-
tween different brain systems, which could underlie the cogni-
tive impairments in AD. This hypothesis was supported by our
findings of the most significant AD-related FCS decreases ap-
peared in the 100- to 130-mm range and significant correlations
between the long-range hub FCS values in the DMN and general
cognitive performances (MMSE andMoCA) in patientswithAD. In
this study, we observed short-range connectivity hubs mainly in
the PCC/PCu, MPFC, insula, dACC/SMA, and sensorimotor and
visual cortices, and these regions showed significantly decreased
short-range FCS in AD. Interestingly, these disrupted short-range
hubswere primarily located at the distance of 0–10 mm.This very
short-range FCS might be approximately equivalent to the re-
gional homogeneity (Zang et al. 2004). A previous study has
found significant regional homogeneity decreases in the PCC/
PCu and significant increases in the left fusiform in the AD
patients (He, Wang, et al. 2007), which is consistent with our

Figure 6.Correlationmaps of cognitive performance and full-, short-, and long-range FCS values in theAD group. Red colors represent positive correlations and blue colors

represent negative correlations. MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; AVLT, World Health Organization–University of

California–Los Angeles Auditory Verbal Learning Test; CDT, Clock Drawing Task; FCS, functional connectivity strength.
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findings. Of note, in this study, we obtained a cutoff point (i.e.,
90 mm) between short- and long-range hubs using FCS-based
hierarchical clustering analysis, which captured connectivity re-
lated information and could be better than the previously em-
ployed arbitrary cutoff point of 75 mm (Achard et al. 2006; He,
Chen, et al. 2007).

To further address the extent to which FCS metrics could
serve as a biomarker to differentiate individuals with AD from
HCs, we proposed the VDA-ROC analysis approach and found a
high sensitivity and specificity in the PCC/PCu, especially for
long-range FCS. The PCC/PCu is a core region of human brain
structural (Hagmann et al. 2008; Gong et al. 2009) and functional
(Tomasi and Volkow 2010; Liang et al. 2013) networks. Neuroima-
ging studies have consistently reportedAD-related abnormalities
in this region, such as hypometabolism (Minoshima et al. 1997),

hypoperfusion (Hirao et al. 2005), amyloid deposition (Frisoni,
Lorenzi, et al. 2009), cortical thinning (He et al. 2008), and func-
tional disconnectivity (Greicius et al. 2004; Wang et al. 2007; Xia
et al. 2014). These studies provide crucial evidence that the
PCC/PCu FCS could be a biomarker for the early diagnosis of
AD, and could also be used to evaluate the progression of the dis-
ease. Recently, many pattern recognition techniques have been
widely investigated to automatically classify patients with AD
or prodromal AD from healthy elders (Wang, Jiang, et al. 2006;
Fan et al. 2008; Dai et al. 2012; Wee et al. 2012; Wang, Zuo, et al.
2013; Falahati et al. 2014). These approaches can be roughly
grouped into 2 different categories—node-based or connectiv-
ity-based—depending on the type of features extracted from
the neuroimaging data. In the first category, the features are
defined as the measures of the brain nodes, such as GM volume

Figure 7.Disrupted FCS patterns in the verymild (CDR = 0.5) andmild (CDR = 1) ADgroupswhen comparedwith theHC group. These group-based analysis results based on

full-, short-, and long-range FCS maps were separately obtained by using a voxel-based, one-way analysis of covariance (ANCOVA) with age and gender as covariates,

followed by post hoc two-sample t-tests. Notably, there were no significant differences in age, gender, and education level among the 3 groups. ANCOVA, one-way

analysis of covariance; CDR, Clinical Dementia Rating; FCS, functional connectivity strength; HC, healthy control.
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(Fan et al. 2008; Dai et al. 2012; Falahati et al. 2014), amplitude of
low-frequency fluctuations (Dai et al. 2012), and FCS (the current
study). In the second category, the features are the measures of
the connectivity, such as functional correlations (Wang, Jiang,
et al. 2006; Wee et al. 2012; Wang, Zuo, et al. 2013) and fiber con-
nectivity (Wee et al. 2012) between regions. Future studies would
be valuable to explore which type of features, or their combina-
tions, are more sensitive for classifying patients with AD.

Overall, our results support the hypotheses that: (1) brain
hubs with increased metabolic cost could result in amyloid pla-
que deposition and further lead to their functional disconnec-
tions, and (2) the disrupted brain hubs patterns in AD are
connection-distance-dependent, being characterized by the

disruptions of longer distance connections, which tend to con-
sume more energy.

Further Considerations

Several issues need to be further considered. First, to address the
recent concern about the spurious findings caused by head mo-
tion (Power et al. 2012a, 2012b; Van Dijk et al. 2012; Satterthwaite
et al. 2013), we used both regression and scrubbing methods to
validate our results, and ourmainfindingswere preserved. None-
theless, it is worth noting that the effects of residual motion
might still exist,which needs to be further validatedusing the op-
timal head motion correction methods. Second, the current

Figure 8. Validation analyses of between-group FCS differences. (A) The effect of GM density correction. The left panel shows Z-statistical differences in GM density

between 2 groups. The right panel shows Z-statistical differences in FCS after considering GM density as additional covariates. (B) The effect of head motion

correction. Between-group Z-statistical differences in FCS after considering the mean framewise displacement as an additional covariate (left panel) or after a

‘scrubbing’ procedure during preprocessing (right panel). (C) The effect of global signal regression. Within-group mean FCS maps and between-group Z-statistical FCS

difference maps without global signal regression. GM, gray matter; FCS, functional connectivity strength; HC, healthy control; AD, Alzheimer’s disease.
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dataset is cross-sectional, therefore not allowing us to examine
FCS-related dynamic changes with AD progression. Future fol-
low-up studies arewarranted to examineAD-related longitudinal
changes in the network hub connectivity. Third, new criteria to
diagnose AD emphasized the biomarker evidence from positron
emission tomography amyloid imaging and cerebrospinal fluid.
In the future, effective combination of these biomarkers (Koch
et al. 2014; Myers et al. 2014) would be important to clinically
diagnose AD and explore the pathophysiological mechanisms
underlying these disruptions of brain hubs in AD.
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oxfordjournals.org/.
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