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The visual system continuously adapts to the statistical properties of the environment. Existing evidence shows a close re-
semblance between deep convolutional neural networks (CNNs) and primate visual stream in neural selectivity to naturalistic
textures above the primary visual processing stage. This study delves into the mechanisms of perceptual learning in CNNs,
focusing on how they assimilate the high-order statistics of natural textures. Our results show that a CNN model achieves a
similar performance improvement as humans, as manifested in the learning pattern across different types of high-order image
statistics. While L2 was the first stage exhibiting texture selectivity, we found that stages beyond L2 were critically involved in
learning. The significant contribution of L4 to learning was manifested both in the modulations of texture-selective responses
and in the consequences of training with frozen connection weights. Our findings highlight learning-dependent plasticity in the
mid-to-high-level areas of the visual hierarchy. This research introduces an AI-inspired approach for studying learning-induced
cortical plasticity, utilizing DCNNs as an experimental framework to formulate testable predictions for empirical brain studies.
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1 Introduction

The environmental statistics shape our visual system during
evolution and ontogeny [1,2]. Even after the critical period,
enhancement in the sensory channel can be triggered by
prolonged training with basic visual features [3,4], such as

spatial frequency [5], orientation [6], and motion direction
[7,8]. This type of training, known as perceptual learning,
provides an ideal testbed for understanding plasticity in
adults’ brain.
Advances in deep neural networks (DNNs) have enabled

the comparison of hierarchical feature representations be-
tween computational layers and primate visual cortical areas
[9–12]. DNNs pre-trained on natural images exhibit a cor-
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respondence between the visual cortex and DNN layers,
showing an increasing complexity of visual features along
the ventral neural pathway. As a popular example of the
CNN model, AlexNet has been shown to represent high-
order statistical features of textures [13–15]. Notably, texture
selectivity first emerged in Layer 2, consistent with the
functional signature of naturalistic texture representation in
macaque’s and human’s V2 [16].
In a recent psychophysical study, we demonstrated that the

high-order statistical regularities embedded in the natur-
alistic textures can be acquired via perceptual learning, in-
dicating a change in the neural populations above V1 [17].
While the neural substrate underlying statistical learning of
naturalistic textures has not been empirically investigated,
DNN provides a promising testbed to study learning-asso-
ciated plasticity in the hierarchical visual system [18]. In this
study, we tested whether training DNN with naturalistic
textures produces comparable behavioral improvements for
specific statistical components as in humans. The learning-
induced changes in the DNN model yield important predic-
tions to the neural substrate underlying statistical learning of
naturalistic textures in the primate visual hierarchy.

2 Materials and methods

2.1 Stimuli

The stimuli were generated in the same way as our previous
human psychophysical study [17]. In brief, we generated
textures using a synthesis algorithm to capture the high-order
statistical features [19]. Prototypes of textures are gray
photographs (256 × 256 pixels) from www.textures.com.
Each prototype texture is convolved with a bank of filters,
which is analogous to the responses of V1 simple and
complex cells, tuned to different orientations and spatial
frequencies. Low-order statistics refer to the spatially aver-
aged responses of filters selective for different orientations,
positions and spatial scales. Then the model computed
pairwise products across filter responses at different posi-
tions, and across different orientations and scales. The cor-
relations, yielded by averaging all of these pairwise products
across the spatial extent of the image, were categorized as
three kinds of high-order statistics: (1) Linear which captures
spectral features such as periodicity; (2) energy which cap-
tures junctions, corners, edges, lines, and contours; and (3)
phase which distinguishes lines from edges and also captures
gradients in intensity arising from shading.
We used the Portilla-Simoncelli model to synthesize tex-

ture samples that had identical statistics based on each nat-
uralistic prototype texture. One texture family consists of
metametric texture samples from one particular prototype
texture, which was generated with Gaussian white noise and
iteratively adjusted until analysis of the synthetic image

matches the original texture [16]. By manipulating the
strength of the cross-filter correlation, a set of texture
samples was generated for each family spanning a
naturalness axis with nine values, equally spaced from 0 to
0.88. A naturalness level at 0 was referred to as noise, which
only matched the spatially averaged filter responses, but
not the spatially averaged correlations between filter
responses.
To evaluate the transfer effect of learning, we generated

additional families by replacing the linear/energy/phase
component of the trained texture family with its counterpart
in the untrained texture family (linear-/energy-/phase-).

2.2 Model

An AlexNet-based DNN was used to simulate visual learn-
ing of naturalistic textures. We briefly described the network
architecture here (see ref. [13] for details). We adopted the
first five layers of the original AlexNet, in which each unit is
connected locally to a patch of units responding to a local
visual field in the upstream layer or the input image. These
layers feature a function known as convolution, corre-
sponding to the cross-correlation between the inputs and the
filters, enabling parameter sharing and sparsity of connec-
tions. A set of non-linear transformations, including ReLU
(Rectified Linear) nonlinearity, max pooling, and local re-
sponse normalization, were followed by each convolution
layer. We took the layer outputs after these non-linear
transformations, referring to them as L1 to L5 (Figure 1(a)).
The fully connected layers in the original AlexNet were
discarded to reduce model complexity. The network was
tested on a three-alternative-forced choice (3AFC) oddity
task for a direct comparison with human psychophysics.
In a trial, each of the three images (two textures and one
noise, or two noises and one texture) was processed by the
same five convolutional layers, each yielding a vector
readout in L5. The pairwise Euclidean distance between
three vectors was calculated. We defined a probability for
identifying the odd one, which is inversely related to the
distance between the images from the same category (Dsame),
normalized by the distances across all image pairs according
to eq. (1).

p
D
D

1 = . (1)
i i=1

3
same

2.3 Training procedure

Network weights were initialized using the weights in the
five convolutional layers of an AlexNet trained on natur-
alistic images (http://dl.caffe.berkeleyvisio-n.org/bvlc_a-
lexnet.caffemodel).
We chose honeycomb and grassland as two prototypes of
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texture family and trained the network on each of them re-
spectively, for direct comparison with previous human psy-
chophysical results [17]. The network was trained in the
3AFC oddity task on stimulus triplets at all nine naturalness
levels, which were randomly selected from 40 texture images
and 40 spectrally matched noise images of each naturalness
level. During training, a stochastic gradient descent (SGD)
algorithm was used to optimize the Triplet Loss function

[20], minimizing distance between two images of the same
identity and maximizing distance between images of differ-
ent identities. The learning rate and the momentum were set
at 0.00005 and 0.9, respectively. Gradients were obtained by
backpropagating the loss through layers [21]. The network
was trained to simulate the learning process in human sub-
jects, for 500 iterations of 18-image batches so that one
iteration is analogous to a training block for human.

Figure 1 Model architecture (a) and texture modulation index in the pre-trained model ((b), (c)). (a) Schematic illustration of the DNN architecture
alongside the primate visual hierarchy for processing naturalistic textures. Top: illustration of the texture analysis model [19] mapped to the primate visual
hierarchy. The first stage partitioned images into subbands by convolving with a bank of filters tuned to a range of orientations and spatial frequencies. The
linear response and local magnitude response were computed for each local filter, akin to V1 simple and complex cells. In the second stage, the model
computed pairwise products across filter responses at different positions and across different orientations and scales for both sets of responses. Similar
pairwise product computations are conjectured to be implemented in subsequent visual stages. Bottom: DNN architecture. To perform a 3AFC odd-one-out
task, units from the last convolutional layer were read out. The decision was based on pairwise distance computed from the vector representation of each
texture/noise image. (b) The modulation index at full naturalness, averaged across model units for various texture families. Corresponding textures and
spectrally matched noise are shown at the top, sorted from high to low according to the modulation index in L2. The shaded area shows the expected
modulation due to chance (2.5th and 97.5th percentiles of the null distribution). The first two texture families were used for the learning study. (c) Example
histograms of modulation indices across units from L1 to L5. The vertical line denotes the criterion of top 30% modulation. Units with zero responses to both
texture families in the learning study were excluded.
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2.4 Behavioral performance and layer-dependent re-
sponse

Before and after training, we tested the model’s performance
in discriminating the texture from their corresponding noise
in the 3-AFC oddity task. The performance was evaluated for
the trained texture family, the untrained family, and the
trained family with its linear, energy, or phase component
replaced by that of the untrained texture family [17] (Figure
S1). Model performance at nine naturalness levels was used
to construct the psychometric function. The model threshold
was determined as the degree of naturalness at 66.7% ac-
curacy. The learning effect at the performance level was
defined as eq. (2).
Improvement
= (Threshold Threshold ) / Threshold × 100%. (2)pre post pre

In addition to Pre and Post-tests, we tracked the model’s
performance during learning with the trained and the un-
trained texture family after every hundred iterations, re-
spectively. A total of 30 triplets of texture/noise stimuli were
used at each level of naturalness, which were randomly se-
lected from 60 texture images and 60 spectrally matched
noise images different from the training set.
As in previous DNN work, layer-dependent response to

texture families was evaluated in the pre-trained model [15].
The test stimuli for the pre-trained model include synthe-
sized textures from a set of 15 prototypes of naturalistic
texture images according to ref. [19]. For each prototype, we
generated 40 textures with a different random Gaussian
white noise seed and 40 spectrally matched noise images. As
depicted in eq. (3), Texture selectivity of each unit was
quantified using the modulation index (MI) following neu-
rophysiological studies [16].

MI R R
R R= + , (3)texture noise

texture noise

where R denotes unit response to texture or noise. Similar to
the ROI (regions of interest)-based approach in neuroima-
ging studies, for each layer, we identified units exhibiting the
highest 30% modulation index to the trained texture family
in the pre-test (Figure 1(c)). The layerwise learning effect
was assessed by averaging changes across these units,
quantified as eq. (4).

MI MILearning Index = . (4)post pre

Weight change during learning was measured based on the
difference from pre-trained values. The change in each layer
was calculated at each iteration through eq. (5) [22].

d
w

w
= , (5)i

N
i

i

N
i

where wi is the ith element in the N-dimensional weight

vector at each layer in the pre-trained model. δw indicates the
change in the weight vector after training.
To assess the contribution of each DNN layer to learning,

we trained a new (pre-trained) AlexNet model by succes-
sively freezing layers from L1 and compared the perfor-
mance with the fully plastic network. The contribution of
each layer was derived by calculating the accuracy drop from
the successive addition of the downstream layer (e.g., the
contribution of L2 was evaluated by subtracting the accuracy
drop of L1 frozen condition from the L1 + L2 frozen con-
dition).

3 Results

We incorporated all five convolutional layers from the
AlexNet model (Figure 1(a)) with pre-trained weights for
general object recognition. While this model was not tailored
for naturalistic texture processing, we identified a selectivity
to various texture families (Figure 1(b)). This selectivity was
defined as enhanced responses to textures compared to
spectrally matched noise (100% naturalness vs. 0% natur-
alness). Notably, texture selectivity was observed in L2, but
not in L1. In addition to this established transformation from
the initial to the secondary processing stage, we quantified
the texture modulation index in stages beyond L2. We ob-
served an averaged negative index in L3. In contrast, the
modulation index turned positive and continued to increase
from L4 to L5.
Next, we trained the network using a naturalistic texture

discrimination task. We read out responses in the last con-
volutional layer and computed the distance between image
pairs in a 3-AFC oddity task to distinguish texture from
noise. The training was repeated for 36 conditions (2 texture
families, 9 naturalness levels, 2 triples) with a stochastic
gradient descent (SGD) algorithm to minimize the Triplet
Loss function. We performed a two-way ANOVA on the
model’s discrimination threshold with texture family and
iteration as two factors. The threshold, which is inversely
related to sensitivity, gradually lowered during training
(main effect of iterations: F(5, 708) = 1167.74, p < 0.001),
resulting in a 55% and 44% performance improvement
for the trained and the untrained family, respectively
(Figure 2(a)). A significant interaction between iteration and
texture family (F(5, 708) = 15.28, p < 0.001) was also found,
which revealed the threshold of the trained family decreased
more quickly than the untrained family. Post-hoc t-test
showed that sensitivity to the trained texture saturated to-
wards the end of training (400 iterations vs. 500 iterations for
the trained texture: t(59) = 3.16, p = 0.110, Bonferroni cor-
rected).
Similar to our human psychophysical study [17], we

compared thresholds before and after training for five texture
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families: the trained texture, untrained texture, and the
trained texture with its high-order statistics (linear, energy, or
phase) substituted by that of the untrained texture family
(Figure 2(b)). Training significantly lowered the thresholds
for all five texture families (all t(59) > 15.05, p < 0.001,
Bonferroni corrected). To assess the contribution of each
statistical component, we quantified the percent improve-
ment for each family using the formula (Thresholdpre −
Thresholdpost)/Thresholdpre × 100%, and then compared it to
the improvement of the trained texture. Our findings re-
vealed that substituting the statistics led to a significant de-
cline in the model’s improvement (one-sample t-test:
untrained, linear, energy: all t(59) > 4.06, p < 0.001, phase: t
(59) = 2.63, p < 0.05, Bonferroni corrected; Figure 2(c)). The
drop in improvement, ranked from highest to lowest, was
linear (6%), energy (4%), and phase (2%). This pattern
mirrored the behavioral patterns observed in human psy-
chophysics, showing the same order of improvement drop
among statistics-substituting conditions: linear (13%), en-
ergy (10%), and phase (2%) (Figure 2(d)).
To characterize the learning effect across layers, we ana-

lyzed the distributions of modulation indices of units that
exhibited texture selectivity in the pre-trained model
(Figure 3(a)). A learning index was defined by contrasting
the averaged modulation index before and after training
(Figure 3(b)). An index above/below zero indicates that
training increased/decreased the response to the texture.
Positive learning indices with the greatest magnitudes were

observed in L4 and L5 for both trained and untrained tex-
tures. A two-way ANOVA on the learning index showed a
significant interaction between training and layers (F(4,
10790) = 71.41, p < 0.001). Notably, the learning index of the
trained texture was higher than that of the untrained texture
(post-hoc t-test: both t(1079) > 12.93, p < 0.001, Bonferroni
corrected). In addition, a representational similarity analysis
(RSA) showed that learning enhanced the representational
similarity between the trained and untrained texture families
(Figure S2).
To quantify the contributions of different layers to learn-

ing, we measured improvement drop when specific layers
were frozen (Figure 4). A two-way ANOVA on accumulative
improvement showed a main effect of frozen layers (F(4,
590) = 3951.15, p < 0.001; Figure 4(a)). In general, suc-
cessively freezing downstream layers led to a step-by-step
performance drop above L2 (post-hoc t-test: L2 vs L3, L3 vs
L4: both t(119) > 43.08, p < 0.001, Bonferroni corrected;
Figure 4(b)). A two-way ANOVA on layerwise improvement
drop showed a main effect of frozen layers (F(4, 590) =
2018.96, p < 0.001; Figure 4(c)). Post-hoc t-test revealed
significant difference between L3 and L4 (t(119) = 12.36, p <
0.001, Bonferroni corrected), as well as between L4 and L5 (t
(119) = 39.20, p < 0.001, Bonferroni corrected). The most
substantial drop (23%) was identified when freezing L3, i.e.,
the connection weights between L2 and L3. In addition,
freezing L4 led to the second largest drop (19%), followed by
freezing L5 (6%). These findings indicate that compensatory

Figure 2 Learning-induced performance improvement in CNN and humans. (a) Learning curve of CNN. Since 1 SEM error bars are hardly visible, error
bars indicate 1 SD across trials. (b) Texture discrimination performance before and after training. Error bars indicate 1 SEM across trials. (c) Learning-
induced improvements across texture families in CNN. Error bars indicate 1 SEM across trials. (d) Learning-induced improvements across texture families in
human psychophysics. Figure 2(c) is adapted from ref. [17]. Error bars indicate 1 SEM across subjects.
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changes may occur in downstream layers when L1 is frozen.
In contrast, higher-level processing beyond the secondary
visual stage plays a crucial role in the statistical learning of
naturalistic textures, which may be difficult to compensate
for with changes in other layers.
To characterize the time course of learning in the weight

space across layers, we calculated the weight change relative
to the pre-trained weight among 500 iterations in the fully
plastic model (Figure 5(a)). Overall, weights changed
faster in the first half of training, as the change rate of
layers beyond L1 peaked at approximately 200 iterations
(Figure 5(b)). Notably, L1 exhibited a sustained increase in
weight change throughout learning. Its magnitude of final
weight change was ranked second only to that of L3
(Figure 5(c)).

4 Discussion

We found that training DCNN models to differentiate nat-
uralistic textures from noise led to enhanced sensitivity to
high-order statistics, a pattern that mirrors learning in hu-
mans. Alongside this texture-specific learning effect, we
observed an increase in texture selectivity in the units’ re-
sponses, starting in layers beyond L3. Moreover, training the
model with frozen weights in these layers resulted in a sig-
nificant decline in performance. These findings underscore
the plasticity in the mid-to-high levels of the visual hier-
archy, induced by the statistical learning of naturalistic tex-
tures.
Firstly, we observed that the pre-trained model exhibited

selectivity in response to textures beyond its initial proces-

Figure 3 (Color online) Learning-induced changes in modulation indices across CNN layers. (a) Distributions of unit modulation indices for trained and
untrained textures before and after training. (b) Learning effect on modulation index. Learning index is defined by contrasting the modulation index before
and after training. Error bars indicate 1 SEM across trials.

Figure 4 The impact of freezing layers on learning. (a) Learning-induced improvement as successive layers were frozen. (b) Drop in improvement obtained
by subtracting the frozen condition from the all-plastic condition. As more layers were frozen, the magnitude of the drop increased. (c) Layerwise
contribution in performance, quantified by isolating the drop in each added layer. For instance, the y-value at x = 2 in (c) was derived by subtracting the y-
value at x = 1 from the y-value at x = 2 in (b). Error bars indicate 1 SEM across trials.
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sing stage. Our perceptual training was carried out on the
CNN model pre-trained for general object recognition,
without specific tuning for textures. Nevertheless, the texture
selectivity in our CNN was developed in a manner consistent
with previous computational and empirical neural evidence.
In humans and macaques, high-order statistics embedded in
naturalistic textures have been found to modulate neural
responses in V2, but not in V1 [16]. Consistently, L2 was the
first stage to exhibit texture selectivity. Further downstream,
we observed increasing magnitudes of texture selectivity,
which aligns with findings from previous CNN work
[15,23]. The increment in texture selectivity along the ven-
tral visual hierarchy is supported by fMRI and neurophy-
siological studies, with V4 exhibiting higher texture
selectivity than V2 [24–26]. These results demonstrate that
the layer-dependent CNN processing mirrors the human vi-
sual processing of naturalistic textures.
Next, we characterized the discrimination performance of

the DCNN before and after training with specific texture
families. The learning curve follows a pattern similar to that
observed in human perceptual learning studies, where re-
petitive training trials lead to a gradual lowering and eventual
saturation of the threshold for the trained texture family. To
determine if this enhanced performance was specific to the
high-order statistical components embedded in the texture,
we substituted different types of statistics in the trained
texture. We discovered that replacing these statistical com-
ponents weakened the learning effect, which mirrors the
learning pattern observed in humans, as reported by Cheng et
al. [17], suggesting a learning specificity in the statistics of
naturalistic textures.
Considering the learning effect at the model performance

level, we characterized the improvement before and after
training on layerwise response across units. We found that
learning enhanced texture selectivity specific to the trained
texture in higher stages L4 and L5. These results suggest a
multi-stage plasticity induced by naturalistic texture learn-
ing. Supporting this hypothesis, our human psychophysical
research reported a partial transfer of learning across visual
hemifields [17]. By simulating the learning process in

DCNN, the present study yields critical predictions about the
neural substrates underlying texture perceptual learning.
To further assess the causal contribution of specific layers

to learning, we trained the model with step-by-step weight
freezing. We observed a decline in performance when
freezing the connection weights above L2. Notably, the most
substantial decrease in learning performance occurred when
the weights in L2-L3 connection were fixed. Although
compensatory changes may take place in other layers under
freezing conditions, they cannot recover the pivotal role of
the downstream visual processing stages beyond L2. Taken
together with the learning effect on layerwise texture se-
lectivity, these freezing findings support the idea of multiple
high-level stages involved in the statistical learning of nat-
uralistic textures.
It may seem unexpected that the learning-induced en-

hancement in texture selectivity was not observed in L2, the
initial stage known for its preference for naturalistic textures
over their spectrally matched noise. This suggests that the
specific learning effects on the trained texture family might
not necessarily enhance the texture selectivity at this early
stage. Previous studies have indicated that in primates’ visual
cortex, texture-selective processing progresses from V2 to
V4 [25,27]. It is possible that V4 develops a specialized
computational module, as different image dimensions have
been shown to modulate neuronal response in this area [28].
In humans, our recent 7T fMRI work revealed no columnar
organization for texture processing in V2. Meanwhile, we
found enhanced texture selectivity in V4 and significant
feedback connectivity from V4 to V2 [26]. These results
highlight the critical role of mid-to-high-level visual areas,
above V2, in the experience-dependent acquisition of texture
selectivity.
In the present model findings, the learning effect beyond

L2 was also reflected in the weight space, as weights in L2-
L3, and L3-L4 were substantially enhanced after learning.
These findings were in line with the role of V3 [29] and V4
[24–26,28,30] in texture processing in human and primate
visual cortex. The learning-induced changes in feedforward
connectivity generate important predictions for future stu-

Figure 5 (Color online) Learning in the weight space. (a) Layerwise weight change trajectories during learning; (b) iteration at which the rate of change
peaked; (c) final layer change.
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dies. In human, layer-dependent fMRI allows for inter-
rogating feedforward and feedback connectivity in the cortex
[26,31], thus providing a promising method to testify the
observed changes in weight space.
While substantial and irreplaceable changes were identi-

fied in the mid-to-high-level processing stages, we also ob-
served changes in the weight space at the early stage.
Specifically, L1 exhibited a continual weight change which
saturated the latest across layers during learning. In addition,
the final weight change in L1 was ranked the second, only to
L3 in a fully plastic model. These results suggest that
learning-induced rerouting of information may start early,
even in areas that do not exhibit a texture-selective re-
presentation. However, weight changes at this early stage
might not be crucial to learning, as indicated by the
negligible changes in model performance when L1 was
frozen. This underlines the need for further research into the
relationship between weight changes across different
layers and their impact on layer-dependent information
representation.
Our findings help bridge the gap in our understanding of

neural plasticity beyond the secondary visual cortical pro-
cessing stage, setting a foundation for future electro-
physiological and fMRI studies. Future works on CNNs
should examine the layerwise representation of various di-
mensions of statistical information (e.g., coarseness, direc-
tionality, and regularity) to establish a closer link between
DCNN and primate mid-level visual processing [24,28,30].
Furthermore, the emergence of texture selectivity can serve
as a criterion for testifying the biological plausibility in
neural networks, whether achieved with a backpropagation
algorithm with minimal parameter intervention [22,32], or
through shallow neural network model employing self-su-
pervised training to match the layerwise complexity [33].
Finally, our work paves the way for studying dynamic tex-
ture perception and material attributes [34,35] in more
complex, naturalistic scenes.
In sum, the current study demonstrates human-like learn-

ing in the DCNN for the acquisition of high-order statistics
embedded in naturalistic textures, highlighting an AI-in-
spired approach to studying learning-induced cortical plas-
ticity.
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