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Natural scenes are filled with groups of similar items. Humans employ ensemble coding to extract the summary statistical informa-
tion of the environment, thereby enhancing the efficiency of information processing, something particularly useful when observing
natural scenes. However, the neural mechanisms underlying the representation of ensemble information in the brain remain elusive.
In particular, whether ensemble representation results from the mere summation of individual item representations or it engages
other specific processes remains unclear. In this study, we utilized a set of orientation ensembles wherein none of the individual item
orientations were the same as the ensemble orientation. We recorded magnetoencephalography (MEG) signals from human partic-
ipants (both sexes) when they performed an ensemble orientation discrimination task. Time-resolved multivariate pattern analysis
(MVPA) and the inverted encoding model (IEM) were employed to unravel the neural mechanisms of the ensemble orientation rep-
resentation and track its time course. First, we achieved successful decoding of the ensemble orientation, with a high correlation
between the decoding and behavioral accuracies. Second, the IEM analysis demonstrated that the representation of the ensemble
orientation differed from the sum of the representations of individual item orientations, suggesting that ensemble coding could fur-
ther modulate orientation representation in the brain. Moreover, using source reconstruction, we showed that the representation of
ensemble orientation manifested in early visual areas. Taken together, our findings reveal the emergence of the ensemble represen-
tation in the human visual cortex and advance the understanding of how the brain captures and represents ensemble information.
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Significance Statement

Ensemble coding, a cognitive process of extracting summary statistical information from groups of similar items, stands as a
pivotal strategy enabling humans to efficiently process complex natural scenes with limited sensory capacities. However, the
neural mechanisms of ensemble coding remain largely unknown. Recent modeling studies have predominantly highlighted
the importance of the summed activation across all items in ensemble coding. Intriguingly, here, we show that ensemble ori-
entation representation differed from the summed representation of all component item orientations, suggesting that ensem-
ble coding incorporates additional processes beyondmere summation. Additionally, we explore how the ensemble orientation
representation per se evolved in the human visual cortex. Our findings significantly extend our understanding of ensemble
coding.

Introduction
Despite our capacity-limited visual system, humans continuously
process richly detailed natural scenes (Cohen et al., 2016;
Whitney and Leib, 2018; Fu et al., 2021). The apparent gap
between our subjective rich perceptual experience and our objec-
tive limited sensory capacity has been extensively discussed. One
way to reconcile this gap is through ensemble coding, a process
that leverages the regularity and redundancy in natural scenes
(Cohen et al., 2016; Baek and Chong, 2020). Ensemble coding
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allows the brain to condense a large amount of useful informa-
tion into summary statistical descriptors, such as mean
(Haberman and Whitney, 2009; Leib et al., 2016), variance
(Solomon, 2010; Michael et al., 2014), and outliers (Cant and
Xu, 2020; Epstein et al., 2020) from a group of similar items,
remarkably enhancing the efficiency of information processing.
The pervasiveness of ensemble coding in perception (Whitney
and Leib, 2018; Corbett et al., 2023) further emphasizes its
importance in shaping our rich perceptual experience. Notably,
ensemble coding has been reported for stimuli at various levels
of visual processing, ranging from low-level features, such as ori-
entation (Dakin and Watt, 1997; Parkes et al., 2001; Michael
et al., 2014) and hue (Maule et al., 2014; Webster et al., 2014),
to high-level semantics, such as emotion (Haberman and
Whitney, 2009; Im et al., 2017) and lifelikeness (Leib et al., 2016).

Despite the fundamental role of ensemble coding in informa-
tion processing of the brain, its neural mechanisms remain elu-
sive. Previous neuroimaging studies have primarily focused on
identifying the neural substrates involved in ensemble represen-
tations. For example, Cant and Xu (2012, 2017, 2020) found that
the parahippocampal place area and retrosplenial cortex were
highly sensitive to changes in object ensembles. In addition, Im
and colleagues reported enhanced activation in the intraparietal
sulcus (IPS) and the superior frontal gyrus in response to emo-
tion ensembles compared with individual facial expressions
(Im et al., 2017). However, two key aspects of the neural mecha-
nisms underlying ensemble coding remain unclear. First, the
neural representation of ensemble information per se is still
not clear. It is possible that activations in the aforementioned
regions might result from summation of the neural responses
to all individual items rather than a process specific to ensemble
coding (Corbett et al., 2023). Second, few studies have examined
the temporal aspects (e.g., time courses) of the neural mecha-
nisms of ensemble coding. Both issues are crucial for gaining a
comprehensive picture of ensemble coding and its relationship
with the coding of individual items.

In this study, our aims were two-fold. First, we aimed to distin-
guish the neural responses to ensemble information from the
summed neural responses to individual items (i.e., simple summa-
tion hypothesis). To this end, we utilized a set of orientation ensem-
bles where none of the individual item orientations were the same
as the ensemble orientation (i.e., mean orientation; Fig. 1B). This
differed from most previous studies (Dakin and Watt, 1997;
Dakin, 2001; Solomon, 2010; Attarha and Moore, 2015; Epstein
and Emmanouil, 2021; Tark et al., 2021), where the ensemble infor-
mation of the stimuli was often very similar or even identical to the
feature information of some individual items. Second, we aimed to
unveil the time course of ensemble representation by recording
high temporal-resolution magnetoencephalography (MEG) signals
while participants performed an ensemble orientation discrimina-
tion task. Participants could estimate the ensemble orientations and
perform an ensemble orientation discrimination task with our sti-
muli. The ensemble orientation could be reliably decoded from the
recorded MEG signals, and the peak decoding accuracy was highly
correlated with the behavioral accuracy. Furthermore, by virtue of
the inverted encoding model (IEM), we converted the recorded
MEG signals to orientation channel responses, thereby investigat-
ing how the ensemble orientation representation emerges over
time.We found that orientation channel responses weremodulated
∼370 ms after stimulus onset, suggesting that ensemble coding
engages specific neural processes. Finally, using source reconstruc-
tion, we showed that the representation of ensemble orientation
manifested in early visual areas.

Materials and Methods
Participants. Twenty-three healthy participants (five males; mean

age, 22.86) were recruited for the main experiment and fifteen (nine
males; mean age, 22.27) for the control experiment. All participants
reported normal or corrected-to-normal vision and had no known neu-
rological or visual disorders. Each participant provided written informed
consent prior to the study in accordance with the procedures and proto-
cols approved by the human subject review committee of Peking
University.

Stimuli and design. In our study, the visual stimulus consisted of 32
items (oriented bars, 0.2° × 0.7°). These items were randomly but evenly
distributed on three invisible concentric circles (radius = 1.5°, 2.8°, and
4.1°, respectively) centered at fixation (item number = 5, 11, and 16).
In addition, each item was further jittered <0.2°. This stimulus design
aimed to disrupt any stimulus configuration and discourage participants
from paying attention to particular fixed locations. An item could be at
one of nine possible orientations, from 5° to 165° in steps of 20° (i.e., 5°,
25°, 45°, 65°, 85°, 105°, 125°, 145°, and 165°; Fig. 1A). The visual stimulus
could be either homogeneous or heterogeneous in terms of item orienta-
tion (Fig. 1B). In a homogeneous stimulus, all item orientations (α°) were
identical. Therefore, the ensemble orientation (θ°, i.e., the mean orienta-
tion of all items) equates to its component item orientation (α° = θ°). In a
heterogeneous stimulus, its ensemble orientation (θ°) could be one of the
nine possible orientations. Here, the ensemble orientation was θ°, and its
component item orientations were θ° ± 20° and θ° ± 40° (eight items for
each orientation). Note that there was no item with the orientation of θ°
in heterogeneous stimuli.

Participants were required to perform an ensemble orientation dis-
crimination task in the MEG (Fig. 1C). They were instructed to maintain
fixation on the central dot, pay attention to all items, and estimate the
ensemble orientation. In a trial, a homogeneous or heterogeneous stimu-
lus was displayed for 500 ms, followed by a 500 ms interstimulus interval
(ISI), during which only a fixation point was presented. A black probe
line (length, 9°; orientation, θ° ± 10° or θ° ± 20°) was then presented for
500 ms. Participants pressed a key to indicate whether the probe line
was oriented clockwise or counterclockwise relative to the ensemble ori-
entation of the first stimulus.

All stimuli were generated and controlled using Psychtoolbox-3
(Matlab; Pelli, 1997) and were projected (spatial resolution, 1,024 ×
768; refresh rate, 60 Hz) onto a translucent screen inside a dimly lit, mag-
netically shielded room. Participants viewed the stimuli from a fixed dis-
tance of 85 cm. Throughout the main experiment, participants were
instructed to maintain fixation, and their eye movements were moni-
tored using an EyeLink 1000 Plus eye tracker (SR Research). Before
the experiment, participants practiced the task along with feedback to
ensure a clear understanding of the task. In the main experiment, they
completed at least five runs with homogeneous stimuli and at least eight
runs with heterogeneous stimuli. Each run consisted of 108 trials (12 tri-
als for each of the nine ensemble orientations) in a randomized order.

In addition to the main experiment described above, we also per-
formed a control experiment in which trials with homogeneous and het-
erogeneous stimuli were mixed within the same run. All other
experimental settings were identical. Participants completed at least 10
runs, each consisting of 108 trials. The composition of these runs varied:
some included 36 homogeneous and 72 heterogeneous trials, while oth-
ers included 72 homogeneous and 36 heterogeneous trials, all arranged in
a randomized order.

MEG acquisition and preprocessing. MEG data were collected using a
306-channel (204 planar gradiometer sensors and 102 magnetometer
sensors) Elekta Neuromag TRIUX system at a sampling rate of
1,000 Hz. Raw data were first preprocessed offline with Maxfilter
Software (Elekta) using the temporal extension of the signal space
separation method for noise reduction. The data were then processed
using MNE-python (Gramfort et al., 2013). Data were bandpass filtered
between 0.1 and 45 Hz. To remove eyeblink artifacts, an independent
component analysis was performed. Trials were extracted from 120 ms
before to 1,000 ms after stimulus onset. Data were checked via visual
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inspection for artifacts, and trials with artifacts were excluded from fur-
ther analysis. All the remaining trials were baseline corrected and resam-
pled to 250 Hz to increase the signal-to-noise ratio.

Sensor-level decoding. To decode the ensemble orientation informa-
tion in the stimuli, we applied multivariate pattern analysis (MVPA) to
MEG sensor signals. The decoding analysis was based on linear support
vector machines using MNE-python and was conducted separately for
each participant and stimulus type. First, we randomly discarded some
trials to guarantee that an equal number of trials was available for each
of the nine ensemble orientations. Then, all the remaining trials were
split into four subsets with random assignment and no replacement.
To reduce trial-to-trial noise, trials with the same orientation in each
subset were averaged and normalized (Guggenmos et al., 2018).
Seventy-two sensors, labeled as “Occipital” in the MEG data acquisition
system, were selected for the decoding analyses. Therefore, for each
timepoint, the MEG data were arranged in the form of 72-dimensional
vectors, yielding 36 (4 subsets × 9 ensemble orientations) vectors per
timepoint. Next, a nine-way decoder was trained to classify these
vectors into one of the nine ensemble orientations using a four-fold
cross-validation procedure. The aforementioned procedure was repeated
100 times, each time with a new random trial assignment. Finally, the
resulting decoding accuracies were averaged over repetitions, yielding
an overall decoding accuracy time course for each participant and
stimulus type.

We further investigated how persistent the orientation representa-
tions were (Cichy et al., 2014; Isik et al., 2014; King and Dehaene,

2014; Dobs et al., 2019) by extending the decoding procedure with a tem-
poral generalization approach; i.e., the decoders were trained to distin-
guish ensemble orientation representations at each timepoint but were
tested on data at all other timepoints, thereby generating a temporal gen-
eralization matrix for each participant and stimulus type (Fig. 2B,E,H).
The decoder would exhibit above-chance decoding accuracies at test
timepoints when the orientation representations were similar to those
at the training timepoint. Based on the temporal generalization matrix
of homogeneous stimuli, we aimed to identify an optimal period during
which sensor signals contained the ensemble orientation information
most generalizable to other timepoints. We calculated the generalization
index for each training timepoint by counting the number of test time-
points (up to 500 ms after stimulus onset) at which the decoder exhibited
significant decoding accuracies. We defined the optimal timepoint as that
with the highest diagonal decoding accuracy among the top 20 most gen-
eralized timepoints. The 80 ms optimal period was centered at the opti-
mal timepoint.

Next, we trained cross-decoders between the data elicited by homo-
geneous and heterogeneous stimuli and generated a temporal generaliza-
tion matrix for the cross-decoding (Oosterhof et al., 2012). Last, we
extracted and averaged the decoding accuracies for the training time-
points in the optimal period, yielding one cross-decoding accuracy
time course for each participant.

IEM. In addition to the decoding analyses, we implemented the IEM
to reconstruct the ensemble orientation representation in heterogeneous
stimuli. In our study, MEG responses to the visual stimulus were

Figure 1. Stimuli and behavioral task. A, The nine possible orientations in the visual stimuli ranging from 5° to 165° in steps of 20° and schematic descriptions of the component items at the
corresponding item orientations (α°). B, Schematic descriptions of the two types of visual stimuli: homogeneous (left, blue) and heterogeneous (right, red) stimuli. Colored circles indicate the
ensemble orientation (i.e., mean orientations, θ°; here, θ° = 65°) of the visual stimuli. Black bars in the graph indicate the number of items corresponding to each of the nine orientations.
C, Schematic description of the ensemble orientation discrimination task. Participants performed the ensemble orientation discrimination task at all nine possible orientations with both
heterogeneous and homogenous stimuli. D, Behavioral performance in discriminating ensemble orientations with heterogeneous and homogeneous stimuli. Accuracies are plotted as a function
of the ensemble orientation; the dashed line indicates a 50% chance level.
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expressed as a weighted sum of the responses of the nine hypothetical
orientation channels (5°–165°, in steps of 20°):

B1 = W C1, (1)

where B1 (n sensors ×m trials) is the matrix of sensor signals at a given
timepoint across trials,W (n sensors × 9 channels) is the matrix of linear
weights mapping the orientation channel space to the sensor space, and
C1 (9 channels ×m trials) is a design matrix of channel responses.

The IEM analysis consisted of two stages. In the first stage, we per-
formed a model-based encoding. Data elicited by homogeneous stimuli
was used to construct an encoding model and to estimate the weight
matrix W. To this end, we first extracted the orientation pattern
(i.e., B1) from the MEG sensor signals at each timepoint in the optimal
period. Based on previous studies (Mo et al., 2019, 2022; Rademaker
et al., 2019), we modeled the idealized orientation tuning functions as
half-sinusoidal functions raised to the eighth power peaked at the nine
possible ensemble orientations. Hence, for each trial in the model train-
ing sessions, channel responses (i.e., C1) could be predicted from these
idealized tuning functions. Accordingly, we could estimate the weight
matrix with the least-square linear regression:

Ŵ = B1 C
T
1 (C1 C

T
1 )

−1. (2)

Next, in the model-based reconstruction stage, we applied the estimated
weight matrix Ŵ with its Moore–Penrose pseudoinverse to the data
elicited by heterogeneous stimuli at all timepoints in order to acquire
instantaneous channel responses. To reconstruct the orientation repre-
sentation of heterogeneous stimuli, we assumed that this weight matrix
was invariant across timepoints and tasks, an assumption supported by
the results from the temporal generalization matrixes:

C2 = (Ŵ
T
Ŵ)−1ŴTB2. (3)

The equation above provides model-based reconstructions of the
instantaneous channel responses on a trial-to-trial basis for individual par-
ticipants. Note that to increase the signal-to-noise ratio, the MEG data
underwent similar random assignment and averaging procedures as those
in the decoding analysis (see above, Sensor-level decoding, paragraph 1).
The encoding stage was repeated 20 times, and the reconstruction stage
was repeated 10 times per encoding stage. The reconstructions were recen-
tered at the ensemble orientation and averaged across trials and are stated
as “channel response profile” hereafter. Hence, we converted the time-
resolved MEG signals into orientation channel responses (0°, ±20°, ±40°,
±60°, ±80°; 0° indicates the ensemble orientation). Note that both channel
response profiles—whether predicted or reconstructed—were obtained
using encoding models estimated with the same data elicited by homoge-
neous stimuli. Therefore, the two profiles stand on an equal footing and
they are comparable (Sprague et al., 2018, 2019).

To quantify the quality of the orientation information encoded, we
computed the representational fidelity of the channel response profiles
as in previous studies (Oh et al., 2019; Rademaker et al., 2019; Tark
et al., 2021). For each timepoint, the recentered channel responses
were taken as nine vectors in the orientation space (0°–180°), each point-
ing to the corresponding channel orientation. These vectors were then
projected to a new orientation space spanning 0°–360°. The representa-
tional fidelity was the sum of these vectors at 0° (i.e., the ensemble orien-
tation). A larger value of fidelity indicates a preferentially stronger
representation at the ensemble orientation.

Bayesian probabilistic decoding. To further validate our findings, we
utilized a probabilistic decoding approach known as TAFKAP (Li et al.,
2021; van Bergen and Jehee, 2021) to estimate the probability of different
ensemble orientations producing the measured MEG responses. This
approach integrates a generative model with Bayesian inference. To our
knowledge, this is the first application of TAFKAP to MEG data.
According to the generative model, MEG responses to the ensemble orien-
tation stimuli could be represented as a weighted sum of the responses of

the nine hypothetical orientation channels (5°–165°, in steps of 20°), com-
bined with noise. This noise consisted of two components: a channel-
specific component that was shared among sensors with similar channel
tuning functions and a sensor-specific component that was unique to
each sensor. Both components followed zero-mean Gaussian distributions.
This led to a simple form of noise covariance matrix V as follows:

V = s2ŴŴT + rttT + (1− r)I ◦ ttT . (4)

The first term captured the covariance of the channel-specific component,
where σ was the standard deviation of orientation channels, Ŵ was the
estimated weight matrix from Equation 2. The last two terms approxi-
mated the covariance of the sensor-specific component, where I is the
identity matrix, ∘ denotes element-wise multiplication, t is a vector con-
taining each sensor’s independent standard deviation, and r is a scalar
between 0 and 1, which controlled the amount of shared variability among
sensors irrespective of their channel tuning functions (for detailed deriva-
tions, see van Bergen et al., 2015; van Bergen and Jehee, 2021).

For each participant, the generative model was trained using data elic-
ited by homogeneous stimuli during the optimal period. Note that every
five MEG trials were averaged to generate a new trial for further analysis,
following procedures similar to those in the decoding and IEM analyses. In
TAFKAP, the training data were resampled with replacement to generate
multiple bootstrap datasets. For each resampled training set j, the Vj was
further regularized using the empirical covariance matrix derived from
that training set. Then, the free parameters uj = {Ŵ j, Vj} were estimated
using ordinary least squares. The obtained generative model was then
applied to the test dataset. Using the Bayes’ rule and a flat prior, the pos-
terior probability of a stimulus s at a certain ensemble orientation given the
MEG responses b was computed as follows:

p(s|b; uj) =
p(s|b; uj)p(s)�
p(s|b; uj)p(s)ds

. (5)

The obtained posterior probabilities were averaged over resamples, yield-
ing the posterior probability function for all possible orientations based on
the measured MEG signals.

To evaluate the TAFKAP’s performance with MEG data, we con-
ducted a cross-validation analysis using data elicited by homogeneous
stimuli. First, as expected, the obtained probability function was flat
before stimulus onset and peaked at the ensemble orientation during
the optimal period, indicating that the TAFKAP effectively captures ori-
entation information from MEG data. Second, we benchmarked the
TAFKAP’s performance against that of the MVPA by transforming its
probability function into classification accuracy. We found a significant
positive correlation between the accuracies of the two methods, further
validating the TAFKAP. These findings strongly supported the applica-
bility of the TAFKAP to MEG data, while future studies with simulations
could provide additional insights into its underlying assumptions and
further validate its robustness.

Importantly, in our study, the trained generative model was applied
to two independent test datasets: one dataset was MEG signals elicited by
heterogeneous stimuli, and the other dataset was synthesized data using
MEG signals elicited by four homogeneous stimuli. The synthesized data
were the simple summation of the MEG signals elicited by each of the
four item orientations, which were measured separately using the homo-
geneous stimuli with corresponding orientations and then multiplied
with 0.25 (MacEvoy and Epstein, 2009; Baeck et al., 2013). According
to the simple summation hypothesis, the two test datasets should be
indistinguishable. For both test datasets, this Bayesian probabilistic
decoding procedure was repeated 100 times, and the obtained posterior
probability functions were recentered at the ensemble orientation and
averaged across trials.

Source reconstruction. To better understand how the ensemble ori-
entation representation emerges along the visual hierarchy, we per-
formed source reconstruction to estimate the responses in different
regions of interest (ROIs). Source reconstruction was performed using
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MNE-python and the FreeSurfer toolbox. For each participant, structural
magnetic resonance images (MRI) were collected with a 3 T Siemens
Prisma (T1-weighted; 3D MPRAGE; 0.5 × 0.5 × 1 mm3 resolution).
Then individual cortical surfaces were reconstructed using the default
recon-all process and segmented using the watershed algorithm in
FreeSurfer. Based on the reconstructed surfaces (inner skull surface),
individual volume conductions were estimated using single-layer bound-
ary element models (BEMs). We then set up individual source spaces
comprising 4,096 points per hemisphere (corresponding to 4.9 mm
source spacing). After manually coregistering the MEG data to the
MRI coordinate system using the head-digitized shape and fiducials
(Fischl, 2012; Gramfort et al., 2013), we calculated the forward model.
Sensor noise covariance matrices were estimated across all trials from
the baseline period (–120 to 0 ms with respect to stimulus onset;
Engemann and Gramfort, 2015). Next, the inverse operators were gener-
ated with default MNE parameters and applied at the single-trial level
(method dSPM, lambda = 1/3). Hence, the sensor-level data covering
the whole brain (i.e., 306 sensors) were projected into the source space.

We extracted source-level data in four predeterminedROIs, namely V1,
V2, V3, and IPS (Tark et al., 2021). Each ROI was derived from a surface-
based atlas (Wang et al., 2015). Next, the atlas files were mapped onto indi-
vidual cortical surfaces using the Neuropythy toolbox. For each ROI, we
applied the same MVPA and IEM procedures to the source-level data.

Statistical analysis. To assess the statistical significance of decoding
accuracies and channel responses while controlling for multiple compar-
isons, we performed cluster-based permutation tests (Maris and
Oostenveld, 2007). The null hypothesis was a one-ninth chance level
for decoding accuracy and 0 for channel response. We first defined clus-
ters as temporally consecutive significant timepoints (cluster-defining
threshold p < 0.05, uncorrected). Next, we obtained a summed cluster-
level test statistic for each cluster (i.e., t-scores), which was compared
with a permutation-based null distribution. We permuted the labels by
randomly multiplying accuracies or responses by +1 or –1 (i.e., sign
permutation test) and searched for the cluster with the highest statistic.
This procedure was repeated 5,000 times, yielding a null distribution.
Lastly, the p value for each cluster (i.e., pcorrected) was calculated as the
proportion of cluster-level statistic in the null distribution exceeding
the observed cluster-level statistic.

In addition, we estimated the onset latencies (i.e., earliest significant
timepoint after stimulus onset) of decoding accuracies using a jackknife-
based approach (Kiesel et al., 2008; Zhang et al., 2023). From the data, we
obtained a jackknife sample consisting of n data resamples. For each
resample, one participant’s data was omitted, and an onset latency was
estimated using data from the remaining n–1 participants. The onset
latencies were then compared across the jackknife samples. We com-
puted 5,000 permuted samples of differences between two onset latencies
after randomly recording the condition from which each onset latency
was taken, yielding a null distribution. The p value for the observed
difference between the two conditions was calculated as the proportion
of differences in the null distribution exceeding the observed difference.

Results
Behavioral performance in the ensemble orientation
discrimination task
In the main experiment, 23 participants performed an ensemble
orientation discrimination task with homogeneous or hetero-
geneous stimuli in the MEG. With homogeneous stimuli,
participants’ responses were highly accurate at all ensemble ori-
entations, reaching an average accuracy of 91.39% (t(22) = 47.339;
p= 1.24 × 10−23; Cohen’s d= 9.871). With heterogeneous stimuli,
participants were still able to discriminate the ensemble orienta-
tions (72.82%; t(22) = 12.393; p= 2.14 × 10

−11; Cohen’s d= 2.585),
though with a significantly lower accuracy compared with that
with homogeneous stimuli (t(22) = 11.739; p= 6.06 × 10−11;
Cohen’s d= 2.448; Fig. 1D). These results demonstrate that par-
ticipants successfully estimated the ensemble orientations in both

homogeneous and heterogeneous stimuli, suggesting that our
brain could represent the ensemble orientation.

MVPA decoding analysis
We employed a time-resolved MVPA to examine whether
ensemble orientations could be decoded from MEG sensor sig-
nals. We first decoded the ensemble orientation in homogeneous
stimuli. Here, the ensemble orientation was the same as the item
orientation. Figure 2A showed the time course of decoding accu-
racy. A cluster-based permutation test showed that the ensemble
orientation information could be decoded from the MEG signals
after 100 ms with respect to stimulus onset (pcorrected < 0.001),
with a peak at 512 ms. In addition, we extended the MVPA by
a temporal generalization approach and found that the decoders
generalized well after ∼170 ms (cluster-based permutation test,
pcorrected < 0.001; Fig. 2B), indicating stable neural representations
of the ensemble orientation. Next, we decoded the ensemble orien-
tation in heterogeneous stimuli where the ensemble orientation
differed from its component item orientations. A cluster-based
permutation test showed that the ensemble orientation could be
reliably decoded from MEG signals after 168 ms with respect to
stimulus onset (pcorrected < 0.001; Fig. 2D), with a peak at 637 ms.
For heterogeneous stimuli, the decoders generalized well after
∼210 ms (cluster-based permutation test, pcorrected < 0.001;
Fig. 2E). Importantly, the latency of ensemble orientation decoding
for heterogeneous stimuli (112 ms; t test: pcorrected < 0.05, FDR cor-
rected, ≥5 consecutive significant timepoints) was significantly
later (permutation test, p< 0.001; Fig. 2G) than that for homoge-
neous stimuli (100 ms; t test: pcorrected < 0.05, FDR corrected, ≥5
consecutive significant timepoints). Moreover, for heterogeneous
stimuli, the peak decoding accuracy was highly correlated with
the behavioral accuracy across individual participants (0.594,
p = 0.001; Fig. 2F). In contrast, no such correlation was found
for homogeneous stimuli (0.021, p=0.462; Fig. 2C), likely due to
a ceiling effect, as participants consistently achieved high beha-
vioral accuracy.

Although item orientations in heterogeneous stimuli differed
from those in homogeneous stimuli, both stimuli had the same
ensemble orientations. Therefore, we performed cross-decoding
analyses to investigate whether the two stimuli had a similar repre-
sentation of the ensemble orientation in the brain. We found that
the cross-decoder trained with data from one stimulus type could
successfully decode ensemble orientations in the other stimulus
type and demonstrate good generalization between ∼250 and
∼700 ms (cluster-based permutation test, pcorrected < 0.001;
Fig. 2H). Further, we defined an optimal period for the training
data elicited by homogeneous stimuli and averaged the decoding
accuracy time courses for heterogeneous stimuli based on the train-
ing timepoints in the optimal period (420–500 ms; see Materials
and Methods). The resulting time courses exhibited successful
decoding of the ensemble orientations in heterogeneous stimuli
(364–624 ms, cluster-based permutation test, pcorrected < 0.001;
Fig. 2I).

These findings demonstrate that our brain can represent
ensemble orientation in a reliable and persistent way.
Moreover, such ensemble representation can be independent of
local item orientations.

IEM analysis
Using IEM, we decomposed the sensor-level MEG signals to an
ensemble stimulus into weighted responses of a set of orientation
channels, each preferring one of the nine possible orientations.
Using the data elicited by homogeneous stimuli during the optimal
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period, we constructed encoding models and estimated the respec-
tive contribution (i.e., weight) of each orientation channel to the
MEG sensor signals. With these weights, we could reconstruct
the channel responses of the nine orientation channels (i.e., channel
response profile) for each timepoint when participants viewed
either homogeneous or heterogeneous stimuli (Fig. 3A).

We first examined the reconstructed channel response
profiles for both homogeneous and heterogeneous stimuli. The

reconstructed channel response profiles were circularly shifted
to align their ensemble orientations to a common 0°. In the
absence of ensemble orientation information, such as before sti-
mulus onset, the profile should appear flat, without peaks.
However, after stimuli are processed in the brain, peaks at their
respective ensemble orientations (i.e., 0°) should emerge in the
channel response profiles. For homogeneous stimuli, we recon-
structed the channel response profiles using leftout data. As

Figure 2. Time-resolved ensemble orientation decoding analysis. The decoding analysis was performed separately for each participant and each stimulus type using MEG occipital sensor
signals. Panels A–C in the first row illustrate results with homogeneous (blue) stimuli, while panels D–F illustrate results with heterogeneous (red) stimuli. A, D, Time courses of ensemble
orientation decoding accuracy. The ensemble orientation decoders were trained using MEG data at a specific timepoint and tested on the leftout data at the same timepoint. A gray bar indicates
the visual stimulus presentation interval, and the lines below indicate significant decoding accuracies using the cluster-based permutation test (pcorrected < 0.001). B, E, Temporal generalization
matrices of the ensemble orientation decoding. The decoders were trained using data at a single timepoint and tested on all timepoints. Vertical and horizontal dot lines mark the onset of visual
stimuli. The black contour indicates significant decoding accuracies using the cluster-based permutation test (pcorrected < 0.001). C, F, Correlations between behavioral accuracy and peak decoding
accuracy. G, Onset latencies for ensemble orientation decoding with heterogeneous and homogeneous stimuli. Error bars indicate SEM. Asterisks indicate significant correlations or differences
(**p< 0.01; ***p< 0.001). H–I, Temporal generalization matrix and extracted time courses for coss-decoding analysis. The cross-decoders were trained using MEG data from one stimulus
type and tested on the data from the other stimulus type.

6 • J. Neurosci., February 12, 2025 • 45(7):e1688232024 Gong et al. • Orientation Ensemble Representation



Figure 3. IEM-based time-resolved reconstruction of the ensemble orientation representation. These analyses were performed separately for each participant using MEG occipital sensor
signals. A, Schematic overview of the IEM analysis. Participants performed the ensemble orientation discrimination task at nine ensemble orientations (5°–165° in steps of 20°). Each ensemble
orientation corresponded to the preferred orientation of a hypothetical orientation channel. The idealized tuning functions of these nine channels were characterized as Gaussian-like functions
centered at their respective preferred orientation (coded in different colors). The predicted channel responses to a given stimulus were derived from these idealized tuning functions. Using data
from homogeneous stimuli and predicted channel responses, we estimated the weights of each orientation channel for each MEG sensor. Next, to acquire instantaneous channel response profiles,
these estimated weights were inverted and applied to the leftout data elicited by homogenous stimuli and all data elicited by heterogeneous stimuli at all timepoints. B, C, Time-resolved
reconstructions of homogeneous (B) and heterogeneous (C) stimuli at all timepoints. D, Average of the reconstructed channel response profiles in a prestimulus period (black) or the optimal
poststimulus period (blue). To predict the channel response profiles of a heterogeneous stimulus, we adopted the channel response profile obtained from the data elicited by homogeneous
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shown in Figure 3B, we obtained the instantaneous channel
response profile for each timepoint. We further averaged the
reconstructed channel response profiles across all timepoints in
an 80 ms time window for both a prestimulus period (−100 to
−20 ms relative to the stimulus onset) and the optimal period
(420–500 ms). We found a bell-shaped average channel response
profile, with the highest response located at 0° in the optimal
period (repeated-measures ANOVA: F(1.308,28.767) = 49.482;
p = 1.40 × 10−8; h2

p = 0.692) but not in the prestimulus period
(F(3.100,68.190) = 0.548; p= 0.657; Fig. 3D). Similarly, for heteroge-
neous stimuli, we obtained the instantaneous channel response
profile for each timepoint (Fig. 3C). We then calculated the aver-
age channel response profile and found that they peaked at 0° in
the optimal period (F(2.177,47.883) = 30.107; p= 1.43 × 10−9;
h2
p = 0.578; Fig. 3F). However, in the prestimulus period, the

average channel response profile was flat (F(3.407,74.959) = 0.599;
p= 0.639).

Next, we examined whether the ensemble representation is a
mere summation of individual item representations or whether it
engages other specific processes. Note that in a heterogeneous sti-
mulus, there were four possible item orientations, all different
from its ensemble orientation. To predict the channel response
profile under the mere summation hypothesis, we adopted the
channel response profiles estimated with the data elicited by
homogeneous stimuli as response tunings to the four component
item orientations in heterogeneous stimuli and computed the
summed responses with an equal weight (0.25) assigned to
each component item orientation (Fig. 3E). We speculated that
if the ensemble representation did engage other specific pro-
cesses, the reconstructed channel response profile should differ
from the predicted one. Therefore, we compared the recon-
structed channel response profile with the predicted one by
performing repeated-measures ANOVAs with approach (recon-
structed and predicted channel responses) and orientation
channel (9 orientation channels) as two within-subject factors.
Interestingly, we found a significant interaction between
approach and orientation channel during the optimal period
(F(2.168,47.692) = 3.416; p= 0.038; h2

p = 0.134; Fig. 3F) but not in
the prestimulus period (F(3.320,73.048) = 0.445; p = 0.741), sug-
gesting that orientation representations in the brain were fur-
ther modulated by ensemble coding. To assess the quality of
the encoded ensemble orientation information, we computed
the representational fidelity from channel response profiles fol-
lowing the method in previous studies (Mo et al., 2019;
Rademaker et al., 2019). For both reconstructed and predicted
channel response profiles, we computed the average represen-
tational fidelity for the ensemble orientation during the opti-
mal period. We found a significant higher fidelity from the
reconstructed channel response profile compared with that
from the predicted one (t(22) = 2.337; p = 0.016; Fig. 3G).
Together, these findings indicate that our brain engages in
additional processes beyond a mere summation to represent
the ensemble orientation.

To further examine the modulation of ensemble coding on ori-
entation representations, we split the nine orientation channels
into three groups (Fig. 3E,H): (1) the ensemble orientation group
(i.e., 0°); (2) the item orientation group (i.e., ±20°, ±40°); and
(3) the other orientation group (i.e., ±60°, ±80°). The channel
responses were averaged within groups. To compare the recon-
structed and predicted channel responses, for each timepoint, we
performed a repeated-measures ANOVA with approach (recon-
structed and predicted channel responses) and orientation group
(ensemble, item, and other orientation groups) as two within-
subject factors. We found significant interactions between orienta-
tion group and approach (intervals: 372–432, 912–932 ms,
pcorrected < 0.05, FDR corrected, ≥5 consecutive significant
timepoints). As shown in Figure 3H, for item orientation, no sign-
ificant difference was observed between the reconstructed and pre-
dicted channel responses averaged at 372–432 ms (t(22) = 1.647;
pcorrected = 0.341; Bonferroni’s correction level: 3). In stark contrast,
the reconstructed channel response to the ensemble orientation
was significantly elevated than the predicted one (t(22) = 3.397;
pcorrected = 0.008), while that to the other orientation were lower
than the predicted one (t(22) =−2.629; pcorrected = 0.046).

Finally, we performed source reconstruction to estimate the
responses in different ROIs in order to investigate the neural
substrates of ensemble orientation representation. We extracted
source-level data from four predetermined ROIs: V1, V2, V3,
and IPS. For each ROI, we applied the same MVPA procedure
to decode the ensemble orientation. All four ROIs exhibited
significant decoding of the ensemble orientation in heteroge-
neous stimuli (V1: 332–608, 612–768 ms; V2: 332–1,000 ms;
V3: 328–948 ms; IPS: 212–1,000 ms; cluster-based permutation
test, pcorrected < 0.001; Fig. 4A, right). However, no difference in
the peak decoding accuracy was found between ROIs, except for
the peak decoding accuracy in IPS, which was higher than that
in V1 (t(22) = 4.216; pcorrected = 0.002; Bonferroni’s correction
level: 6). Interestingly, only V2 exhibited a significant correla-
tion between individual peak decoding and behavioral accura-
cies (r = 0.471; pcorrected = 0.046; Bonferroni’s correction level:
4; Fig. 4B). The onset latencies of ensemble orientation decod-
ing in V2 and V3 were significantly earlier than that in IPS
(pscorrected < 0.01; permutation test, Bonferroni’s correction
level: 6; Fig. 4A, left), with no significant difference between
V2 and V3 (pcorrected = 0.054).

We also conducted IEM analyses for each ROI and compared
the reconstructed and predicted channel response profiles for het-
erogeneous stimuli. During the optimal period, both V2 and V3
exhibited significantly higher fidelity of the ensemble orientation
from the reconstructed profiles (V2: t(22) = 2.664, pcorrected = 0.028;
V3: t(22) = 2.644, pcorrected = 0.030; Bonferroni’s correction level: 4;
Fig. 4C). However, we observed significant interactions between
orientation group and approach only in V2 (intervals: 392–420,
440–472, 508–528, 756–776, 788–808 ms; pcorrected < 0.05; FDR
corrected; ≥5 consecutive significant timepoints; Fig. 4D).
Together, these results indicate that early visual areas, including

�
stimuli as response tuning to each of the four component item orientations in the heterogeneous stimulus and computed the summed responses (i.e., a summation hypothesis). E, Predicted
channel response profile to a heterogeneous stimulus based on the summation hypothesis. F, Average of the predicted (black) and reconstructed (red) channel response profiles during the
optimal period. G, Representational fidelities of the ensemble orientation from the reconstructed (red) or the predicted (black) channel response profiles during the optimal period. Further, we
split the nine orientation channels into three groups: the ensemble orientation (i.e., 0°; red), the component item orientation (i.e. ±20°, ±40°; blue), and the other orientation (i.e., ±60°, ±80°;
black). H, Time courses of reconstructed (solid curves) or predicted (dashed curves) channel responses for the three orientation groups. A gray bar indicates visual stimulus presentation interval.
For each timepoint, we performed a repeated-measures ANOVA with approach (reconstructed and predicted channel responses) and orientation group (ensemble, item, and other orientation
groups) as two within-subject factors. Asterisks indicate significant interactions between approach and orientation group (pcorrected < 0.05; FDR corrected; ≥5 consecutive significant timepoints).
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V1, V2, and V3, play an important role in the ensemble orientation
representation, rather than high-level areas.

Bayesian analysis and control experiment
To further validate our findings, we reanalyzed our data in the
main experiment with a Bayesian probabilistic decoding algo-
rithm to estimate how likely different orientations were to

produce the observed MEG signals, i.e., probability functions.
We trained the Bayesian model with data elicited by homoge-
neous stimuli and then applied the trained model to two inde-
pendent datasets: one containing data elicited by heterogeneous
stimuli and the other that was synthesized based on the mere
summation hypothesis (see Materials and Methods). Similar to
the logic in our IEM analysis, we hypothesized that if the

Figure 4. Results of source reconstruction analysis in V1, V2, V3, and IPS. A, Onset latencies and time courses of the ensemble orientation decoding accuracy with heterogeneous stimuli.
B, Correlations between individual peak decoding accuracy and behavioral accuracy. Asterisks indicate significant correlations after Bonferroni’s correction (*pcorrected < 0.05). C, Representational
fidelities of the ensemble orientation from either the reconstructed (red) or the predicted (black) channel responses during the optimal period. Error bars indicate SEM across participants. Asterisks
indicate significant correlations after Bonferroni’s correction (*pcorrected < 0.05). D, Time courses of reconstructed or the predicted (dashed curves) channel responses for the three orientation
groups in V2. A gray bar indicates visual stimulus presentation interval. Asterisks indicate significant interactions between approach and orientation group (pcorrected < 0.05; FDR corrected; ≥5
consecutive significant timepoints).
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ensemble representation does engage an integration process
beyond a mere summation, the probability function estimated
from the heterogeneous dataset should differ from that estimated
from the synthesized one, especially during the optimal period.
Indeed, for the heterogeneous dataset, the probability function
peaked at the ensemble orientation (i.e., 0°), with the probability
of the ensemble orientation significantly higher than the aver-
aged probability of the four item orientations (±20° and ±40°;
t(22) = 4.11; p= 4.5 × 10

−4; Fig. 5A). In contrast, the synthesized
data did not show such a peak in the probability function, show-
ing no difference between probabilities of the ensemble and item
orientations (t(22) = 0.15; p= 0.88). Furthermore, during the opti-
mal period, the probability of the ensemble orientation in the het-
erogeneous dataset was significantly higher than that in the
synthesized dataset (t(22) = 2.51; p= 0.019), a distinction not
observed during the prestimulus period (t(22) = 0.74; p= 0.47).
Consistent with the results of the IEM analysis, these results
also suggest that our brain engages in additional processes
beyond amere summation to represent the ensemble orientation.

Note that in the main experiment, participants viewed homo-
geneous and heterogeneous stimuli in separate runs. With this
design, it could be argued that different perceptual or cognitive
processes might be engaged in different runs. Therefore, we con-
ducted a control experiment where homogeneous and heteroge-
neous trials were mixed within the same run. With 15
participants, we successfully replicated the findings in the main
experiment. Participants were able to discriminate the ensemble
orientations, achieving 90.14% (t(14) = 24.32; p= 7.48 × 10−13)
accuracy for homogeneous and 71.44% (t(14) = 9.03; p= 3.23 ×
10−7) for heterogeneous stimuli. MVPA analysis confirmed
that the ensemble orientation could be decoded from MEG sen-
sor signals, both in heterogeneous (144–804 ms; cluster-based
permutation test; pcorrected < 0.001) and homogeneous trials
(84–800; 804–1,000 ms). Notably, for heterogeneous stimuli,
the peak decoding accuracy significantly correlated with the
behavioral accuracy (r= 0.52; p= 0.025). Furthermore, significant
cross-decoding (324–388 ms; pcorrected < 0.05) of the ensemble
orientation was also observed. Most importantly, as demon-
strated in Figure 5B, the IEM analysis revealed that during the
optimal period, the reconstructed channel response profile was
evidently elevated at the ensemble orientation compared with
the predicted one, showing significantly higher fidelity (t(14) =
1.83; p= 0.045) and higher channel response (t(14) = 2.92; p=
0.0058) to the ensemble orientation.

Taken together, converging evidence from both the Bayesian
analysis and the control experiment supports that our brain
engages in more complex processes beyond a mere summation
to represent the ensemble orientation.

Discussion
We applied time-resolvedMVPA and IEM toMEG data to inves-
tigate the neural representation of ensemble orientation and
track its time course. We reliably decoded ensemble orientations
of both homogeneous and heterogeneous stimuli usingMEG sig-
nals covering the occipital lobe and significant cross-decoding
between the two types of stimuli was also observed. Additionally,
the peak decoding accuracy for heterogeneous stimuli strongly
correlated with the behavioral accuracy. Furthermore, we dem-
onstrated that the ensemble orientation representation, which
emerged ∼370 ms after stimulus onset and primarily manifested
in early visual areas, is not just the sum of the representations of
component item orientations. Together, our findings revealed
how the neural representation of ensemble orientation evolved in
the human visual cortex, contributing to a more comprehensive
understanding of ensemble orientation coding and its relationship
with the coding of individual items.

An important and unique contribution of our study is that we
identify the neural representation specific to the ensemble orien-
tation. In previous studies, the mean of all item feature values was
very similar, if not identical, to individual item feature value, ren-
dering the ensemble and item representations largely indistin-
guishable. However, in our heterogeneous stimuli, instead of
randomly sampling the item orientation from a narrow normal
or uniform feature distribution (Dakin, 2001; Solomon, 2010;
Attarha and Moore, 2015; Epstein and Emmanouil, 2021; Tark
et al., 2021), we ensured a minimal difference of 20° between
each individual item orientation and the ensemble orientation.
Intriguingly, despite such substantial orientation difference, we
still achieved successful cross-decoding between heterogeneous
and homogeneous stimuli, indicating that the ensemble orienta-
tion representation was, at least to some extent, independent of
local feature representations. This is consistent with previous
behavioral studies showing that ensemble perception remained
robust when individual items were noisy, unrecognized, or
neglected (Parkes et al., 2001; Demeyere et al., 2008; Fischer
and Whitney, 2011; Haberman and Whitney, 2011; Hochstein
et al., 2015). Further, although recent modeling studies have
highlighted the importance of the summed activation across all

Figure 5. Results of Bayesian probabilistic decoding in the main experiment and IEM analysis in the control experiment. A, Posterior probabilities of nine possible ensemble orientations for the
heterogeneous (red) and synthesized (orange) datasets, during the optimal period. B, Predicted (black) and reconstructed (red) channel response profiles during the optimal period.
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items in ensemble perception (Haberman and Whitney, 2012;
Brezis et al., 2018; Robinson and Brady, 2023; Utochkin et al.,
2023), our results suggest that the human brain engages in addi-
tional processes beyond simple summation, to represent the
ensemble orientation. This view is further supported by the sign-
ificant differences between the predicted orientation representa-
tion (based on the summation hypothesis) and the reconstructed
orientation representation in both main and control experi-
ments, particularly the higher response/probability to the ensem-
ble orientation.

Our findings characterize how the ensemble orientation rep-
resentation temporally evolved in the brain. Previous studies
have reported the onset latency for enhanced activation or
decoding accuracy of ensemble oddball as well as the identity
of face ensemble is roughly 100 ms (Roberts et al., 2019;
Epstein and Emmanouil, 2021; Im et al., 2021; Sama et al.,
2024). In line with these studies, we revealed a decoding latency
of 112 ms for the ensemble orientation in heterogeneous stimuli
(Fig. 2D). However, whether these results reflect the onset latency
of the summed neural responses to all individual items or if they
are specific to the ensemble information remains unclear, as both
the activation and decoding analysis may not be able to differ-
entiate the two hypotheses. In stark contrast, using IEM, we
found the channel response to the ensemble orientation elevated
∼370 ms after stimulus onset. This suggested that the ensemble
orientation representation per se may emerge at a relatively
late stage. In behavioral studies, ensemble information can be
reliably reported or reproduced with an exposure duration of
as short as 50 ms (Ariely, 2001; Dakin, 2001; Haberman and
Whitney, 2007, 2009; Leib et al., 2016; Li et al., 2016), evidently
shorter than the 370 ms latency we found. What leads to such
a discrepancy? One possible explanation is that the processing
of visual stimuli in the brain is not halted by removing them
from the display because of the persistence of vision. On the other
hand, increasing exposure duration can improve the accuracy of
the estimated ensemble information (Haberman and Whitney,
2009; Whiting and Oriet, 2011; Li et al., 2016), suggesting that
ensemble coding may operate at longer temporal scales.
Another factor we should consider is task difficulty that may con-
tribute to the relatively late emergence of ensemble orientation
representation. In our study, estimating the ensemble orientation
from heterogeneous stimuli was challenging due to the large
variance of item orientations (Dakin, 2001; Solomon, 2010),
which may require a longer time to integrate information and
form the ensemble representation (Mazurek et al., 2003;
Palmer et al., 2005).

Furthermore, the findings regarding the specific ensemble ori-
entation representation and its temporal evolution collabora-
tively point toward an integration process in ensemble coding
beyond a mere summation. Contrary to recent computational
studies that consider ensemble coding as a straightforward feed-
forward process with uniform weighting (Robinson and Brady,
2023; Utochkin et al., 2023), our results suggest a more intricate
integration process. This process likely involves assigning uneven
weights to different components based on their feature proximity
to the ensemble mean, as supported by previous behavioral
(Epstein et al., 2020) and computational studies (de Gardelle
and Summerfield, 2011; Li et al., 2017; Ni and Stocker, 2023).
Specifically, as hinted at by Figure 3F, participants appear to
assign lower weights to the component orientation that differ
by 40° from the ensemble orientation. Note that such uneven
weight assignment would necessitate acquiring the distribution
of component feature values (Utochkin et al., 2023), thereby

challenging the perspective of a pure feedforward process.
Instead, it points to a recursive or potentially iterative process
in the brain, aiming at refining ensemble representation, which
likely demands longer processing time, as reflected in our time
course results. Supporting this, Epstein et al. (2020) demon-
strated how outliers were progressively discounted from the
mean and how the noise they introduced decreased over time.
Taken together, our findings suggest a more complex process
in the formation and refinement of ensemble representation
than previously believed. Moreover, while our results highlighted
the importance of feature proximity, other factors, such as feature
saliency, spatial location, and feature uncertainty (Kanaya et al.,
2018; Tiurina et al., 2024), may also contribute to an uneven
weighting process, pointing to a more complex interplay during
the integration process in ensemble coding.

In our study, the ensemble orientation representation
emerged predominantly in early visual areas. Notably, although
only the correlation between the behavioral accuracy and
the peak decoding accuracy in V2 remained significant after
Bonferroni/FDR correction, the results in V1, V2, and V3 were
highly similar, suggesting all these early visual areas contribute
to the ensemble coding. In contrast, IPS exhibited a different pat-
tern, with the fidelity of the reconstructed channel response
profile being very similar to the predicted one, unlike the signifi-
cant differences observed in V2 and V3 (Fig. 4C). Notably, recent
studies have highlighted the role of the dorsal visual stream, such
as IPS, in ensemble coding (Im et al., 2017, 2021; Tark et al.,
2021). For example, Tark et al., (2021) found a gradual response
increase to the ensemble orientation along the visual hierarchy
and pinpointed ensemble orientation representation in V3 and
IPS. Such observed discrepancies might be due to many factors,
such as differences in ensemble stimulus design, task, and techni-
cal method. Given the relatively small receptive field sizes of neu-
rons in early visual areas compared with the size of our stimuli
(Rosa et al., 1988; Dumoulin and Wandell, 2008; He et al.,
2019; Klink et al., 2021; Luo et al., 2024), how should we interpret
our results? One possible explanation is that the ensemble orien-
tation representation in early visual areas might result from the
feedback signals from high-level areas where the receptive
fields are much larger, such as IPS. If this is the case, the peak
decoding accuracy in IPS should also correlate with the beha-
vioral accuracy; however, this was not observed. Alternatively,
the emergence of ensemble orientation representation in early
visual areas could be due to abundant horizontal connections
in this area to facilitate interactions among individual items
(Roelfsema, 2006). Future research, preferably utilizing high spa-
tial resolution techniques, is warranted to further differentiate
these areas and elucidate the specific role of V1–V3 in orientation
ensemble representation.

The current study focused on the neural mechanisms of ensem-
ble orientation coding. Given the pervasiveness of ensemble coding
in perception, two important issues in ensemble coding need to be
addressed in the future. First, future research may investigate
whether our findings could be generalized to other ensemble sti-
muli processed at different levels of the visual hierarchy, for exam-
ple, face ensembles. Second, while we focused on the representation
of the ensemble mean—the most studied signature of ensemble
perception, ensemble representation encompasses other summary
information, such as variance, outlier, and distribution. How they
are represented in the brain is still largely unknown.

In summary, our findings demonstrated the emergence of the
neural representation specific to ensemble orientation in the
human visual cortex. By distinguishing neural responses to
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ensemble information from the summed neural responses to
individual items, we provide novel insights into the neural basis
of ensemble coding.

Data Availability
Data and codes are available upon request by contacting the
corresponding author.
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