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A B S T R A C T

Visual perceptual learning often requires a substantial number of trials to observe significant learning effects. 
Previously Amar-Halpert et al. (2017) have shown that brief reactivation (5 trials/day) is sufficient to improve 
the performance of the texture discrimination task (TDT), yielding comparable improvements to those achieved 
through full practice (252 trials/day). The finding is important since it would refine our understanding of 
learning mechanisms and applications. In the current study, we attempted to replicate these experiments using a 
larger number of observers and an improved experimental design. Using between-group comparison, we did find 
significant improvements in the reactivation group and the full-practice group as Amar-Halpert et al. (2017)
showed. However, these improvements were comparable to those of the no-reactivation group with no exposure 
to the TDT task over the same period. Importantly, our within-group comparison showed that both the reac-
tivation and no-reactivation groups exhibited additional significant improvements after further practicing the 
TDT task for an additional three days, demonstrating that the full-practice effect was significantly superior to the 
effects of brief memory reactivation or simple test–retest. Besides, when refining the constant stimuli method 
with fewer stimulus levels and more trials per level, we still observed comparable improvements brought by the 
reactivation and no-reactivation groups. Therefore, our results suggested that brief memory reactivation may not 
significantly contribute to the improvement of perceptual learning, and traditional perceptual training could still 
be a necessary and effective approach for substantial improvements.

1. Introduction

Visual perceptual learning refers to performance improvement on 
visual tasks through training (Lu & Dosher, 2022; Sagi, 2011; Watanabe 
& Sasaki, 2015). It has shown powerful real-world applications in 
improving the sensory performance of healthy individuals and rehabil-
itating clinical populations with various types of vision loss, such as 
amblyopia (Levi & Polat, 1996; Zhang et al., 2014), macular degener-
ation (Plank et al., 2014), and cortical blindness (Das et al., 2014; 
Herpich et al., 2019). However, a significant limitation of perceptual 
learning’s practical applications is that it usually requires a long period 
of extensive practice for adequate performance enhancement (Jeter 
et al., 2010; Li et al., 2008). For example, a healthy adult’s performance 
usually reaches a plateau after practicing for 5–10 daily sessions in a 
texture discrimination task (Karni & Sagi, 1991; Wang et al., 2013). 
Additionally, patients with vision impairments like cortical blindness, a 
form of vision loss caused by primary visual cortex damage, require 
months of daily practice to restore normal performance on a motion 
integration task in the blind field, making the training difficult to attain 

and sustain (Das et al., 2014; Huxlin et al., 2009).
Amar-Halpert et al. (2017) previously reported that brief reac-

tivation of encoded visual memories was sufficient to improve visual 
perception. This study is grounded in the reactivation-reconsolidation 
framework, which claims that memories remain dynamic even after 
initial consolidation. Reactivation of memory through exposure to 
salient training stimuli can induce destabilization, triggering a recon-
solidation process during which memories become susceptible to 
modification and can be enhanced or impaired (Lee et al., 2017). In the 
study of Amar-Halpert et al. (2017), observers in the reactivation group 
performed a texture discrimination task with 252 trials on day 1 to 
encode and consolidate memory. Subsequently, memory reactivation 
was conducted with only 5 trials for three consecutive days. The results 
showed that brief reactivations were sufficient to improve memory, as 
evidenced by the significant learning outcomes observed in the post-test 
on day 5, which were comparable to those of the full-practice group that 
performed the task with 252 trials per day. Besides, the reactivation 
group outperformed a no-progress control condition measuring two- 
session learning without memory reactivations (day 1 to day 2 in the 
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full-practice group). They also established far-threshold reactivation and 
no-reactivation groups with pre-test and post-test spaced nine days apart 
and consistently found that the former outperformed the latter.

Several investigations using task interference have suggested the 
reactivation and reconsolidation process in perceptual learning (Bang 
et al., 2018; Dayan et al., 2016; Herszage & Censor, 2017; Huang et al., 
2023; Shibata et al., 2017; Walker et al., 2003). For example, Bang et al. 
(2018) demonstrated that reconsolidation did occur after reactivation in 
visual perceptual learning. They asked observers to practice the detec-
tion of two orientations in a blockwise manner and found that the timing 
between the blocks (either short: 0 h or long: 3.5 h) led to either inter-
ference and performance decline, or no interference and performance 
improvement. These results suggested that reconsolidation occurred 
during the 3.5-hour interval following the reactivation of the trained 
orientation detection task. To the best of our knowledge, Amar-Halpert 
et al. (2017) is the first study reporting the reconsolidation phenomenon 
in the domain of visual perceptual learning. The finding of Amar-Halpert 
et al. (2017) is significant as it has challenged the fundamental principle 
of procedural learning theory, which states that practice makes perfect. 
Instead, their finding suggests a more efficient mechanism underlying 
improvement in visual perception, which has far-reaching clinical ap-
plications. The same research team has also generalized these results to 
other fields of procedural learning, including motor skill learning 
(Herszage et al., 2021), numeric domain (Schrift et al., 2022), and 
clinical populations like individuals with autism (Klorfeld-Auslender 
et al., 2022). This generalization across different memory fields and 
populations has great theoretical significance for the reconsolidation 
theory itself, given that the reconsolidation phenomenon has predomi-
nantly been based on Pavlovian fear-conditioning models in rodents 
since its initial discovery (Lee et al., 2017; Misanin et al., 1968; Nader 
et al., 2000; Schneider & Sherman, 1968).

More recently, Chen and de Beeck (2021) have investigated to what 
extent the similar effects of reactivation as Amar-Halpert et al. (2017)
have shown in the texture discrimination task could be found in a 
paradigm that focuses on the learning of more complex visual objects. 
Chen and de Beeck (2021) conducted extensive measurements in more 
observers (N = 52). They found that although there was small progress 
in the reactivation group (25 trials/day), this improvement did not reach 
the same level of improvement as the group with full practice (800 tri-
als/day), which was inconsistent with the result of the Amar-Halpert 
et al. (2017) study reporting comparable learning effects between 
reactivation and full practice. Previous evidence has shown that 
boundary conditions (such as memory type, memory strength, and age) 
are important determinants of whether memory is more or less suscep-
tible to being reactivated and, possibly, disrupted (Auber et al., 2013). 
These boundary conditions under which memory does not undergo 
reconsolidation have been used to explain the contrasting results ob-
tained across different studies. The limited effect of memory reactivation 
in Chen & de Beeck (2021) resonates with other domains in which it has 
proven hard to identify the boundary conditions under which a reac-
tivation protocol is effective (Hardwicke et al., 2016). On the other 
hand, Chen and de Beeck (2021) explain the inconsistency with the 
positive findings of Amar-Halpert et al. (2017) as differences in the 
domain (texture vs. objects) and training protocols, considering that 
perceptual learning is sensitive to a lot of variables, including stimulus 
parameters.

Because of the theoretical and practical significance of brief reac-
tivations in improving visual perceptual learning and the inconsistent 
results with different visual tasks, we opted to conduct an independent 
replication of the study by Amar-Halpert et al. (2017) and improve their 
experimental design. First, we adopted the same procedure as theirs in 
our reactivation and full-practice groups, but with a larger sample size 
(n = 23, as opposed to n = 12) to enhance statistical power. We estab-
lished a no-reactivation group (n = 23) with no exposure to the TDT task 
over the same period as the other two groups, rather than utilizing the 
first two-session improvement of a full-practice group or a no- 

reactivation group (n = 7) with pre-test and post-test spaced nine days 
apart, which were implemented as the no-reactivation control condition 
in Amar-Halpert et al. (2017). Second, building upon the between-group 
design, we incorporated a within-group design in which both the reac-
tivation and no-reactivation groups continued to practice the TDT task 
for an additional three days after the post-test on day 5. This extension 
allowed us to capture their full-practice progress from day 1 to day 8 and 
achieve within-group comparisons by comparing the full-practice effect 
with the reactivation-induced improvement in the reactivation group or 
single test–retest effect in the no-reactivation group. The within-group 
comparison can enhance the statistical power of the analysis by 
reducing variability and increasing the sensitivity to detect meaningful 
differences in the learning effects between reactivation and full practice 
(Kantowitz et al., 2009). Third, to weaken the inference about data 
overdispersion and yield more stable threshold estimates, a control 
experiment with a refined constant stimuli method by reducing the 14 
SOA levels to 6 or 7 levels on new reactivation and new no-reactivation 
groups was conducted. Finally, as the thresholds were estimated by 
fitting the psychometric curves and different fitting methods might 
induce varying threshold estimates (Kingdom & Prins, 2010; Manning 
et al., 2018), to see whether the results were affected by fitting methods, 
we estimated thresholds using two approaches: the same fitting method 
as Amar-Halpert et al. (2017) and the psignifit4 fitting method which 
allows accurate Bayesian estimation of psychometric functions for 
(potentially) overdispersed data (Schütt et al., 2016).

2. Methods

2.1. Observers and apparatus

Eighty-five observers (aged 21.9 ± 3.3 years) with normal or 
corrected-to-normal vision participated in this study: 23 in the reac-
tivation group, 23 in the no-reactivation group, 23 in the full-practice 
group, 8 in the new reactivation group, and 8 in the new no- 
reactivation group. All were new to psychophysical experiments and 
were unaware of the purposes of the study. The study was conducted in 
accordance with the Declaration of Helsinki and was approved by the 
Peking University Institution Review Board. Informed consent was ob-
tained from each observer before data collection.

The stimuli were generated with Psychtoolbox-3 software (Kleiner 
et al., 2007; Pelli, 1997) and presented on a 21-inch Sony G520 color 
monitor (1024-pixel × 768-pixel resolution, 0.39-mm × 0.39-mm pixel 
size, 75-Hz frame rate). The minimal and maximal luminance of the 
monitor was 0.3 and 74.3 cd/m2, respectively. A chin-and-head rest 
helped stabilize the observer’s head. The viewing was binocular at a 
distance of 105 cm. Experiments were run in a dimly lit room. Responses 
were collected via the computer keyboard.

2.2. Stimuli and procedure

Stimuli. The texture discrimination task (TDT) was nearly identical to 
the one in Amar-Halpert et al. (2017) study. It primarily included a 
target frame and a mask (Fig. 1a). The target frame occupied an area of 
15.1◦ × 15.1◦ at a viewing distance of 105 cm. It consisted of a 19 × 19 
array of white bars displayed on a black screen background. Within this 
array, a target was presented at the lower right visual quadrant, centered 
at 5.7◦ from the texture center with the target center location jittering ±
1.3◦ from trial to trial. The target configuration defined by three diag-
onal bars fixed at 45◦ was vertical or horizontal. The target configura-
tion was embedded in a background of horizontal bars that were 0.46◦ ×

0.03◦ each and spaced 0.79◦ apart in the array. The position of each bar 
was slightly jittered from trial to trial, ranging from 0◦ to 0.11◦. In the 
center of the array, a randomly oriented letter T or L (0.48◦ × 0.37◦) was 
presented to control fixation. The mask was a same-sized field consisting 
of randomly oriented V-shaped patterns and a central compound pattern 
of superimposed T and L.
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Procedure. A standard trial of the texture discrimination task in the 
current study was nearly identical to that of Amar-Halpert et al. (2017). 
Each trial began with a 400 ms presentation of a fixation cross, followed 
by a 500 ms blank screen display. Then a target frame was briefly pre-
sented for 13.3 ms, followed, at various stimulus onset asynchronies 
(SOAs, measured from the onset of the target to the onset of the mask), 
by a 100 ms patterned mask. After the mask, the screen went blank until 
the observer made a response. The observers were asked to make two 
responses: first to report the foveal letter (T or L), and then to report the 
orientation of the target configuration (horizontal or vertical). Imme-
diate auditory feedback was provided only for the incorrect foveal letter 
identification. There was a 250 ms inter-trial interval. The average ac-
curacy of the foveal letter identification task is approximately 95 %, 
indicating effective foveal fixation.

The study employed the constant stimuli method, in which several 
predetermined stimulus levels were used and each level consisted of a 
fixed number of trials. The stimulus levels were stimulus onset asyn-
chronies (SOAs, measured from the onset of the target to the onset of the 
mask), which were multiples of 13.3 ms frame duration, ranging from 3 
frames to 26 frames (40, 67, 80, 107, 120, 147, 160, 187, 200, 227, 240, 
267, 307, 347 ms). In the main experiment, the 14 SOA levels were 
randomized across all trials, with 18 trials per SOA level. Thus, a stan-
dard block comprised a total of 252 trials. In the control experiment, the 
constant stimuli method was refined by reducing the 14 SOA levels to 6 
or 7 levels, with each level containing 42 or 36 trials, maintaining the 
total number of trials at 252.

Before the formal experiment, a pretraining block consisting of 10 
trials at a 347 ms SOA was administered repeatedly until observers 
reached a 90 % accuracy rate. Observers who completed ten pretraining 
blocks without attaining the required accuracy were excluded from the 
study. Those who successfully passed the pretraining phase then pro-
gressed to a familiarization block comprising 14 trials, each corre-
sponding to one of the 14 SOAs. Subsequently, the formal experiment 
commenced.

2.3. Experimental design

The main experiment included three groups of observers: the reac-
tivation group, the no-reactivation group, and the full-practice group 
(Fig. 1b). In the first phase, we attempted to replicate the procedure in 
the Amar-Halpert et al. (2017) study. All observers performed the TDT 
with 252 trials on day 1 and day 5 to measure the pre-test and post-test 
threshold respectively. The operation in the middle of three days divided 
observers into three groups. From day 2 to day 4, the full-practice group 
still practiced the TDT with 252 trials per day, and the brief-reactivation 
group practiced the TDT with only 5 trials per day to reactivate memory 
while no operation was carried out on the no-reactivation group. 
Reactivation trials were set individually at one of the 14 SOAs that was 
closest to each observer’s pre-test threshold (See Table S1 for a specific 
value of each observer). The day numbers (e.g., 1–5) typically, but not 
always, represent consecutive days. Most observers finished Phase 1 
within 6 days (23/23, 22/23, and 21/23 in the reactivation, no- 
reactivation, and full-practice groups, respectively). In the second 
phase, the reactivation and no-reactivation groups continued to practice 
the TDT with 252 trials per day for three days (from day 6 to day 8). This 
operation allowed us to obtain their full-practice performance (from day 
1 to day 8) and compare it with their previous reactivation-induced 
improvement or single test–retest effect (from day 1 to day 5). These 
within-group comparisons, focusing on individual changes within the 
same group, help control for individual differences, thereby providing 
more reliable results than between-group comparisons. Additionally, the 
within-group comparison can enhance the statistical power of the 
analysis by reducing variability and increasing the sensitivity to detect 
meaningful differences (Kantowitz et al., 2009).

In the control experiment, the constant stimuli method was refined 
by reducing the 14 SOA levels to 6 or 7 levels, with each level containing 
42 or 36 trials, maintaining the total number of trials at 252. Sixteen new 
observers were randomly assigned to the new reactivation group (n = 8) 
or the new no-reactivation group (n = 8). All observers in the new 

Fig. 1. Stimuli and study design a. Stimulus configuration of the texture discrimination task (TDT). The red circle was not present in the actual stimuli. b. The study 
design included a between-group design and a within-group design (main experiment). The between-group design consisted of the reactivation group, the no- 
reactivation group, and the full-practice group. The within-group design in the reactivation and the no-reactivation groups covered Phase 1 and Phase 2. The 
pre-test, post-test, and post-test2 thresholds were measured on day 1, day 5, and day 8 respectively. In the control experiment, the new reactivation and no- 
reactivation groups only experienced Phase 1.
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reactivation group and half of the observers in the new no-reactivation 
group experienced 6 SOA levels (40, 67, 107, 160, 240, 347 ms), with 42 
trials per SOA level. The other half of observers in the new no- 
reactivation group underwent 7 SOA levels (40, 80, 120, 160, 200, 
267, 347 ms), with 36 trials per SOA level. Reactivation trials were set 
individually at one of the 6 ~ 7 SOAs that was closest to each observer’s 
pre-test threshold (See Table S1 for a specific value of each observer). 
Using the modified constant stimuli method, the new reactivation and 
no-reactivation groups only experienced Phase 1.

2.4. Data fitting and statistical analysis

To evaluate the impact of different data fitting methods on the re-
sults, we employed two fitting methods to fit psychometric curves for 
threshold estimates.

The first fitting method is consistent with the approach described by 
Amar-Halpert et al. (2017). The threshold was calculated for each 
standard block (252 trials) using the Weibull fit for the psychometric 
curve, with slope β and finger error (mistyping) parameter 1 – p, yielding 
the function: 

P(t) = p{1 −
1
2

exp[−
( t

T

)β
]}+

1 − p
2

=
1
2
{1 + p[1 − exp[−

( t
T

)β
]]}

where P(t) is the measured probability of correct response; t represents 
the SOA levels; finger error parameter, which takes stimulus- 
independent errors (e.g., attention lapses, response-key confusion) into 
account, is a free parameter within a range (0 < 1 – p < 1); T is the 
estimated threshold for each curve, defined as the SOA for which 81.6 % 
of responses were correct when p = 1. Weibull fit was computed using a 
maximum likelihood method, assuming a binomial process (Wichmann 
& Hill, 2001).

The second method is using the psignifit4 software package (see http 
://bootstrap-software.org/psignifit/) to fit psychometric curves and 
estimate thresholds (Schütt et al., 2016). Here the psychometric function 
modeling was extended from the standard binomial to a beta-binomial 
model to enable accurate Bayesian estimation of psychometric func-
tions even for overdispersed data. Psychometric curves for each observer 
were generated by fitting the data with a Weibull function. Using the 
chosen sigmoid family S(x;m,w), the psychometric function ψ is defined 
with two additional parameters λ and γ for the upper and lower 
asymptote, scaling the sigmoid function: 

ψ(x; m, w, λ, γ) = γ+(1 − λ − γ)S(x; m, w)

where threshold m is the stimulus level at which 81.6 % of responses 
were correct when λ = 0 (to maintain consistency with the first fitting 
method); w represents the width (difference between the stimulus levels 
for which the unscaled function reaches 0.05 and 0.95 respectively); λ 
represents the lapse rate (the difference between the upper asymptote 
and 1); γ represents the guess rate (the difference between the lower 
asymptote and 0). γ is fixed at 0.5 and the lapse rate λ is free.

For both fitting methods, to evaluate how well the psychometric 
curves capture the empirical data of each individual, we assess 
goodness-of-fit by calculating deviance which is recommended for 
binomial data (Wichmann & Hill, 2001): 

D = 2
∑K

i=1

{

niyilog(
yi

pi
)+ ni(1 − yi)log(

1 − yi

1 − pi
)

}

where K denotes the number of SOA levels, ni: the number of trials in 
SOA level i,yi: the observer’s response accuracy in SOA level i, pi: the 
response accuracy predicted by the fitted model.

For correct models, deviance for binomial data was asymptotically 
distributed as χ2

k , where K denoted the number of SOA levels and a χ2 

probability of < 0.05 is considered to indicate a poor fit of the model 
(Hietanen et al., 2022; Lasagna et al., 2020; Wichmann & Hill, 2001). In 

our data, both fitting methods indicated the same observer (R23) with 
poor goodness-of-fit on day 1 (see Figs. S1 for detailed information). As 
the statistical analyses produced similar results regardless of whether 
this observer was included or not in the analyses, we decided to keep this 
observer in the threshold analyses.

The learning effect was evaluated by the improvement in thresholds. 
Individual threshold improvement from the pre-test to the post-test was 
calculated as 100 %× (Thresholdpretest – Thresholdposttest)/Thresh-
oldpretest and then averaged across observers to obtain the mean percent 
improvement (MPI). To evaluate the progress following Phase2 training, 
individual further threshold improvement from post-test to post-test2 
was calculated as 100 % × (Thresholdpost-test – Thresholdpost-test2)/ 
Thresholdpost-test, and individual total threshold improvement from pre- 
test to post-test2 was calculated as 100 % ×(Thresholdpretest – Thresh-
oldposttest2)/Thresholdpretest.

All analyses were conducted using open-source JASP software 
version 0.17.2.1 (Wagenmakers et al., 2018). Improvements in SOA 
thresholds were compared against the value of 0 through a one-sample t- 
test. Within-group comparisons were performed using a paired samples 
t-test or one-way repeated measures analysis of variance (ANOVA). 
Comparisons between the two groups were conducted using both clas-
sical and Bayesian independent samples t-tests.

3. Results

3.1. Main experiment_Phase1: Comparing learning effects of reactivation 
with no reactivation and full practice

In Phase 1 covering five days, we attempted to replicate the exper-
iments of Amar-Halpert et al. (2017) with a larger number of observers. 
A total of 69 observers were randomly assigned into three groups, with 
23 observers in each group (Fig. 1b). To assess the impact of different 
fitting methods on the results, we estimated thresholds using two ap-
proaches: the same fitting method as Amar-Halpert et al. (2017) (see 
Figs. S1-1, S2-1, S3-1 for individuals’ data fitting) and the psignifit4 
fitting method (see Figs. S1-2, S2-2, S3-2 for individuals’ data fitting). 
The results of the same fitting method were presented unless specified.

In the reactivation group, thresholds in the post-test (day 5) were 
significantly reduced compared to those in the pre-test (day 1) (Fig. 2a 
(i), mean_pretest = 127.3 ± 10.2 ms, mean_posttest = 85.8 ± 4.6 ms, t22 =

3.99, p < 0.001, Cohen’s d = 0.83; psignifit4: Fig. 2c(i), mean_pretest =

143.1 ± 14.4 ms, mean_posttest = 88.9 ± 4.8 ms, t22 = 3.92, p < 0.001, 
Cohen’s d = 0.82). The TDT performance improved significantly 
(Fig. 2b, MPI = 27.1 ± 4.4 %, t22 = 5.93, p < 0.001, Cohen’s d = 1.24; 
psignifit4: Fig. 2d, MPI = 28.0 ± 5.4 %, t22 = 5.16, p < 0.001, Cohen’s d 
= 1.08). The mean percent improvement of the reactivation group in 
Amar-Halpert et al. (2017) was also significant (MPI = 20.6 ± 5.5 %).

In the no-reactivation group, thresholds in the post-test (day 5) were 
significantly lower than those in the pre-test (day 1) (Fig. 2a(ii), 
mean_pretest = 117.9 ± 6.0 ms, mean_posttest = 90.2 ± 6.2 ms, t22 = 5.46, 
p < 0.001, Cohen’s d = 1.14; psignifit4: Fig. 2c(ii), mean_pretest = 128.4 
± 9.7 ms, mean_posttest = 92.6 ± 6.5 ms, t22 = 3.9, p < 0.001, Cohen’s d 
= 0.82), with a threshold decrease of 27.7 ± 5.1 ms (psignifit4: 35.8 ±
9.1 ms) from pre-test to post-test. The TDT performance improved 
significantly (Fig. 2b, MPI = 22.7 ± 3.8 %, t22 = 5.91, p < 0.001, 
Cohen’s d = 1.23; psignifit4: Fig. 2d, MPI = 23.9 ± 4.5 %, t22 = 5.32, p 
< 0.001, Cohen’s d = 1.11). However, the no-reactivation group (n = 7) 
in Amar-Halpert et al. (2017) showed little improvement, with a 
threshold decrease of 7.6 ± 3.3 ms from the pre-test to the post-test.

In the full-practice group, thresholds in the post-test (day 5) were 
significantly lower than those in the pre-test (day 1) (Fig. 2a(iii), 
mean_pretest = 125.0 ± 8.7 ms, mean_posttest = 88.0 ± 5.3 ms, t22 = 5.8, p 
< 0.001, Cohen’s d = 1.21; psignifit4: Fig. 2c(iii), mean_pretest = 135.4 ±
12.1 ms, mean_posttest = 89.4 ± 6.3 ms, t22 = 5.39, p < 0.001, Cohen’s d 
= 1.1). The TDT performance improved significantly (Fig. 2b, MPI =
27.3 ± 3.4 %, t22 = 8.04, p < 0.001, Cohen’s d = 1.68; psignifit4: Fig. 2d, 
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MPI = 30.5 ± 3.6 %, t22 = 8.36, p < 0.001, Cohen’s d = 1.74). The 
learning progress from day 1 to day 2 in our full-practice group was also 
significant (MPI = 12.5 ± 4.2 %, t22 = 2.96, p = 0.007, Cohen’s d = 0.62; 
psignifit4: MPI = 12.4 ± 4.0 %, t22 = 3.09, p = 0.005, Cohen’s d = 0.65). 
The total learning effect of the full-practice group in Amar-Halpert et al. 
(2017) was also significant (MPI = 26.6 ± 5.9 %), but their day1-to- 
day2 improvement was insignificant (MPI = 2.9 ± 5.8 %).

A classical independent sample t-test revealed no significant differ-
ence in learning improvements between the reactivation group and the 
no-reactivation group (t44 = 0.75, p = 0.46, Cohen’s d = 0.22; psignifit4: 
t44 = 0.58, p = 0.57, Cohen’s d = 0.17). A Bayesian independent-sample 
t-test also supports the null hypothesis, with a Bayes factor (BF10) of 0.37 
(psignifit4: BF10 = 0.34), representing the ratio of the likelihood of the 
observed data under the alternative hypothesis to the likelihood under 
the null hypothesis. A BF10 of 0.37 or 0.34 indicated anecdotal evidence 
in favor of the null hypothesis, according to the interpretation of the 
Bayes factor magnitude (Johnson et al., 2022; Wagenmakers et al., 
2018). The finding suggested that brief reactivations did not yield 
additional gains in learning improvement compared to a no-reactivation 
control condition, with these improvements likely attributable to a 
significant retest effect. Besides, both classical and Bayesian indepen-
dent samples t-tests indicated no significant difference in learning im-
provements between the reactivation group and the full-practice group 
(t44 = 0.03, p = 0.98, Cohen’s d = 0.01; BF10 = 0.29, moderate evidence 
for the null hypothesis; psignifit4: t44 = 0.38, p = 0.71, Cohen’s d = 0.11; 
BF10 = 0.31, moderate evidence for the null hypothesis).

In summary, the results from both fitting methods consistently 
demonstrated that the significant learning effect in the reactivation 
group was comparable to that in the no-reactivation group, and more 
likely to reflect a significant retest effect or fast learning occurring in 
session.

3.2. Main experiment_Phase2: Continued training in the reactivation and 
no-reactivation groups

The results in Phase 1 for the three groups and the results in the study 
of Amar-Halpert et al. (2017) were derived from between-group com-
parisons, which could be affected by individual differences. And it was 
still in doubt whether there was potential for further progress for the 
significant retest effects in the reactivation and no-reactivation groups. 
Therefore, after the post-test on day 5, all 23 observers in the reac-
tivation group and 20 observers in the no-reactivation group continued 
to practice the TDT for an additional three days (Phase 2, spanning from 
day 6 to day 8) with 252 trials per day. This extended practice aimed to 
capture their full-practice improvements over two phases (from day 1 to 
day 8) for within-group comparison with Phase 1 improvements (from 
day 1 to day 5).

In the reactivation group, thresholds in the post-test2 were signifi-
cantly lower than those in the post-test (Fig. 3a, mean_post-test = 85.8 ±
4.6 ms, mean_post-test2 = 68.4 ± 4.1 ms, t22 = 3.69, p = 0.001, Cohen’s d 
= 0.77). The TDT performance improved significantly in Phase2 (Fig. 3b 
(i), MPI_Phase2 = 17.8 ± 5.1 %, t22 = 3.50, p = 0.002, Cohen’s d = 0.73; 
psignifit4: Fig. 3b(ii), MPI_Phase2 = 19.8 ± 4.9 %, t22 = 4.05, p < 0.001, 
Cohen’s d = 0.85). The full-practice improvements over the two phases 
were significantly greater than the Phase 1 improvements (Fig. 3b(i), 
MPI_Phase1 = 27.1 ± 4.4 %, MPI_total = 40.7 ± 5.0 %, t22 = 3.67, p =
0.001, Cohen’s d = 0.77; psignifit4: Fig. 3b(ii), MPI_Phase1 = 28.0 ± 5.4 
%, MPI_total = 43.2 ± 5.3 %, t22 = 3.78, p = 0.001, Cohen’s d = 0.79). 
Notably, both classical and Bayesian independent samples t-tests indi-
cated that the reactivation group’s full-practice improvements were also 
greater than those of the full-practice group (t44 = 2.21, p = 0.03, 
Cohen’s d = 0.65; BF10 = 2.02, anecdotal evidence for the alternative 
hypothesis; psignifit4: t44 = 1.96, p = 0.057, Cohen’s d = 0.58; BF10 =

Fig. 2. Phase 1: Improvements in TDT performance from pre-test (day 1) to post-test (day 5) for the three groups under two fitting methods. a & c. The thresholds 
changed as days in the reactivation group (i), the no-reactivation group (ii), and the full-practice group (iii) under the same fitting method as Amar-Halpert et al. 
(2017) (a) and the psignifit4 fitting method from Schütt et al., 2016 (c). Solid triangles and hollow circles represented mean and individual values, respectively. The 
threshold SOA of the y-axis was logarithmic. b & d. Percent improvements in TDT performance from pre-test to post-test for the three groups under the same fitting 
method (b) and the psignifit4 fitting method (d). Circles represented the individuals’ data. Error bars indicated ± 1 standard error of the mean.
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1.34, anecdotal evidence for the alternative hypothesis).
Similarly, in the no-reactivation group, thresholds in post-test2 were 

also significantly reduced compared to those in the post-test (Fig. 3c, 
mean_post-test = 89.0 ± 6.7 ms, mean_post-test2 = 71.3 ± 5.7 ms, t19 = 2.93, 
p = 0.009, Cohen’s d = 0.66), and the TDT performance improved 
significantly during Phase2 (Fig. 3d(i), MPI_Phase2 = 17.0 ± 5.6 %, t19 =

3.01, p = 0.007, Cohen’s d = 0.67; psignifit4: Fig. 3d(ii), MPI_Phase2 =

19.1 ± 5.7 %, t19 = 3.37, p = 0.003, Cohen’s d = 0.75). The full-practice 
improvements over the two phases were significantly greater than the 
Phase 1 improvements (Fig. 3d(i), MPI_Phase1 = 24.1 ± 4.0 %, MPI_total =

38.1 ± 4.3 %, t19 = 3.23, p = 0.004, Cohen’s d = 0.72; psignifit4: Fig. 3d 
(ii), MPI_Phase1 = 25.1 ± 4.8 %, MPI_total = 40.0 ± 4.8 %, t19 = 3.40, p =
0.003, Cohen’s d = 0.76). Notably, both classical and Bayesian inde-
pendent samples t-tests showed that the no-reactivation group’s full- 
practice improvements were also greater than those of the full- 
practice group under the same fitting method (t41 = 2.01, p = 0.05, 
Cohen’s d = 0.61; BF10 = 1.46, anecdotal evidence for the alternative 
hypothesis), although this difference was not observed using the 
psignifit4 fitting method (t41 = 1.60, p = 0.12, Cohen’s d = 0.49; BF10 =

0.83, anecdotal evidence for the null hypothesis).
In summary, both the reactivation and no-reactivation groups 

exhibited significant further improvements during the continued 
training phase, suggesting that the gains in Phase 1 are significant but 
may be insufficient to improve the performance of the texture discrim-
ination task. Besides, our results also indicated that spaced full practice 
over about 8 days in the reactivation and no-reactivation groups may be 
better than mass training over about 5 days in the full-practice group.

3.3. Control experiment: Comparing learning improvements between the 
reactivation and no-reactivation groups using a modified constant stimuli 
method

The main experiment adopted the constant stimuli method in Amar- 
Halpert et al. (2017) including 14 SOA levels, each comprising 18 trials. 
This methodology may feature an excessive number of SOA levels and 
inadequate trials per level, which could lead to non-stationarity in 
observer behavior. According to Blackwell (1952), it is preferable to 
measure more trials per level rather than more levels, as small blocks of 
trials weaken the inference about overdispersion and yield more stable 
threshold estimates. Therefore, we refined the constant stimuli method 
by reducing the 14 SOA levels to 6 or 7 levels, with each level containing 
42 or 36 trials, maintaining the total number of trials at 252. Sixteen new 
observers were randomly divided into two groups: the new reactivation 
group (n = 8) and the new no-reactivation group (n = 8).

In the new reactivation group, thresholds in the post-test (day 5) 
were significantly reduced compared to those in the pre-test (day 1) 
(Fig. 4a(i), mean_pretest = 129.1 ± 11.4 ms, mean_post-test = 96.3 ± 10.2 
ms, t7 = 4.92, p = 0.002, Cohen’s d = 1.74; psignifit4: Fig. 4c(i), 
mean_pretest = 136.3 ± 16.7 ms, mean_post-test = 95.7 ± 10.1 ms, t7 =

3.12, p = 0.02, Cohen’s d = 1.10). The TDT performance improved 
significantly (Fig. 4b, MPI = 25.2 ± 5.2 %, t7 = 4.88, p = 0.002, Cohen’s 
d = 1.72; psignifit4: Fig. 4d, MPI = 27.2 ± 6.9 %, t7 = 3.92, p = 0.006, 
Cohen’s d = 1.39).

Similarly, in the new no-reactivation group, thresholds in the post- 
test (day 5) were significantly lower than those in the pre-test (day 1) 

Fig. 3. Phase 2: Continued training of TDT in the reactivation and no-reactivation groups under two fitting methods. a & c. The thresholds in Phase 1 (shaded) and 
Phase 2 (unshaded) in the reactivation group (a) and the no-reactivation group (c) under the same fitting method as Amar-Halpert et al. (2017). Solid triangles and 
hollow circles represented mean and individual values, respectively. The threshold of the coordinate axis was logarithmic. b & d. Percent improvements in TDT 
performance in Phase 1, Phase 2, and two phases (total) under the same fitting method as Amar-Halpert et al. (2017) (i) and the second fitting method from Schütt 
et al., 2016 (ii) in the reactivation group (b) and the no-reactivation group (d). Circles represented the individuals’ data. Error bars indicated ± 1 standard error of 
the mean.
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(Fig. 4a(ii), mean_pretest = 122.9 ± 14.1 ms, mean_post-test = 85.9 ± 7.4 
ms, t7 = 4.16, p = 0.004, Cohen’s d = 1.47; psignifit4: Fig. 4c(ii), 
mean_pretest = 146.5 ± 24.1 ms, mean_post-test = 86.8 ± 8.0 ms, t7 = 3.24, 
p = 0.01, Cohen’s d = 1.15). The TDT performance also improved 
significantly (Fig. 4d, MPI = 28.4 ± 3.9 %, t7 = 7.20, p < 0.001, Cohen’s 
d = 2.54; psignifit4: Fig. 4d, MPI = 36.0 ± 5.3 %, t7 = 6.75, p < 0.001, 
Cohen’s d = 2.39).

Both classical and Bayesian independent samples t-tests indicated no 
significant difference in learning improvements between the two groups 
(t14 = 0.50, p = 0.63, Cohen’s d = 0.25; BF10 = 0.47, anecdotal evidence 
for the null hypothesis; psignifit4: t14 = 1.0, p = 0.33, Cohen’s d = 0.50; 
BF10 = 0.60, anecdotal evidence for the null hypothesis). Therefore, the 
results of the control experiment further indicated that reactivation did 
not yield additional gains in learning improvement compared to a no- 
reactivation condition, which is consistent with the results of the main 
experiment.

3.4. Finger error/Lapse rate and goodness-of-fit under two fitting methods

Finger errors or lapse rates reflected stimulus-independent errors (e. 
g., attention lapses, response-key confusion). Their values in each fitting 
method were reported in Fig. 5 (also see Supplementary Tables S2 ~ S6). 
One can readily see that finger error/lapse rate values showed a trend of 
decrease across sessions (along with a decrease in thresholds), suggest-
ing increasingly reliable judgments as training progressed.

Statistical analyses of the finger errors/lapse rate values across days 
were conducted for each group. When using the same fitting method as 
Amar-Halpert et al. (2017), a one-way repeated measures ANOVA 
showed that finger error values showed a significant decrease from day 1 
(pre-test) to the last three days (reactivation group: Fig. 5a(i), ps < 0.02; 
full-practice group: Fig. 5a(iii), ps < 0.04) and a significant reduction 
from day 1 to the other four days (no-reactivation group: Fig. 5a(ii), ps <
0.001). Paired samples t-tests indicated that finger error values 
decreased significantly from day 1 to day 5 for both the new reactivation 
and new no-reactivation groups (Fig. 5a(iv), ps < 0.01).

Similarly, when using the psignifit4 fitting method, a one-way 
repeated measures ANOVA showed that the lapse rate values in the 
reactivation group showed no significant main effect of days (Fig. 5b(i), 
p = 0.06), but a paired samples t-test showed a significant decrease from 
day 1 to day 8 (p = 0.04). In the no-reactivation group, lapse rate values 
decreased significantly from day 1 to the other four days (Fig. 5b(ii), ps 
< 0.03). In the full-practice group, lapse rate values exhibited a signif-
icant reduction from the first two days to the last day (Fig. 5b(iii), ps <
0.03). Additionally, the lapse rate values of the new reactivation and 
new no-reactivation groups showed no significant changes from day 1 to 
day 5 (Fig. 5b(iv), ps > 0.1).

To evaluate how well the psychometric curves capture the empirical 
data of each individual, we assess goodness-of-fit by calculating devi-
ance (Wichmann & Hill, 2001), in which smaller deviance indicates 
better goodness-of-fit (Haynes et al., 2024; Su et al., 2024). In particular, 

Fig. 4. Perceptual learning of TDT from pre-test (day 1) to post-test (day 5) in the new reactivation and no-reactivation groups using the modified constant stimuli 
method. a & c. The thresholds changed as days in the new reactivation group (i) and the new no-reactivation group (ii) under the same fitting method as Amar- 
Halpert et al. (2017) (a) and the psignifit4 fitting method from Schütt et al., 2016 (c). Solid triangles and hollow circles represented mean and individual values, 
respectively. The threshold SOA of the y-axis was logarithmic. b & d. Percent improvements in TDT performance from pre-test to post-test for the two groups under 
the same fitting method (b) and the psignifit4 fitting method (d). Circles represented the individuals’ data. Error bars indicated ± 1 standard error of the mean.
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Fig. 5. Finger error/lapse rate across days in each group under two fitting methods. a & b. Finger error in the same fitting method as Amar-Halpert et al. (2017) (a) 
or lapse rate in the psignifit4 fitting method (b) changed as days in the reactivation group (i), the no-reactivation group (ii), the full-practice group (iii), the new 
reactivation group, and the new no-reactivation group (iv). Solid triangles and hollow circles represented mean and individual values, respectively. Error bars 
indicated ± 1 standard error of the mean. Note: 20 observers in the no-reactivation group finished the two phases of the operation.

Fig. 6. Goodness-of-fit (deviance values) across days for each group under two fitting methods. a & b. Deviance values changed as days in the reactivation group (i), 
the no-reactivation group (ii), the full-practice group (iii), the new reactivation group, and the new no-reactivation group (iv) under the same fitting method as Amar- 
Halpert et al. (2017) (a) and the psignifit4 fitting method (b). Solid triangles and hollow circles represented mean and individual values, respectively. Error bars 
indicated ± 1 standard error of the mean.
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both fitting methods indicated the same observer (R23) in the reac-
tivation group with poor goodness-of-fit on day 1 in the chi-square test. 
After excluding this observer’s deviance values (which were retained in 
Fig. 6(i)), we performed a statistical analysis of the deviance values 
across days within each group. A one-way repeated measures ANOVA 
showed that, in the reactivation group, deviance values decreased 
significantly from day 1 (pre-test) to day 8 (post-test2) under the same 
fitting method (Fig. 6a(i), p = 0.02), but not under the psignifit4 fitting 
method (Fig. 6b(i), p = 0.10). In the no-reactivation group, the main 
effect of days is not significant (Fig. 6a(ii), p = 0.35; psignifit4: Fig. 6b 
(ii), p = 0.65). In the full-practice group, the main effect of days is also 
not significant (Fig. 6a(iii), p = 0.35; psignifit4: Fig. 6b(iii), p = 0.36). 
Additionally, paired samples t-tests indicated no significant change in 
deviance values from day 1 to day 5 for both the new reactivation and 
no-reactivation groups (Fig. 6a(iv), ps > 0.1; psignifit4: Fig. 6b(iv), ps >
0.2). These findings indicated that goodness-of-fit did not change across 
days in most groups, reflecting the stability of the fitting models.

Besides, both fitting methods indicated a significantly smaller devi-
ance in the control experimental groups compared to the main experi-
mental groups. Specifically, classical independent samples t-tests 
showed the new reactivation group had significantly lower deviance 
values compared to the reactivation group on day 1 (p = 0.002; 
psignifit4: p < 0.001) and day 5 (p = 0.002; psignifit4: p < 0.001). 
Similarly, the new no-reactivation group had significantly lower devi-
ance values than the no-reactivation group on day 1 (p = 0.005; 
psignifit4: p = 0.004) and day 5 (p < 0.001; psignifit4: p < 0.001). These 
results suggested that our control experiment with the modified constant 
stimuli method produced better goodness of fit.

3.5. Performance on the fixation task

It is speculated that the large improvement of TDT in the no- 
reactivation group might be related to a strategy change in this group, 

where the observers shifted their focus of attention away from the fix-
ation task towards the eccentric texture target discrimination task, 
thereby there might be a reduction in correctly reported fixation targets 
from the pre-test to the post-test. To answer this question, we analyzed 
the performance of the fixation task from the first day to the last day for 
each group. A one-way repeated measures ANOVA showed that the 
accuracies of the fixation task exhibited a significant increase from day 1 
(pre-test) to the other four days (reactivation group: Fig. 7a, ps < 0.001; 
no-reactivation group: Fig. 7b, ps < 0.01). In the full-practice group, the 
accuracies increased significantly from day 1 (pre-test) to the last three 
days (Fig. 7c, ps < 0.001), and the accuracies on the second day were 
significantly lower than those on the last day (Fig. 7c, p < 0.001). Paired 
samples t-tests indicated that accuracies of the fixation task showed a 
significant increase from day 1 to day 5 for both the new reactivation 
and new no-reactivation groups (Fig. 7d, ps < 0.05). These results 
demonstrated a consistent increase rather than a reduction in correctly 
reported fixation tasks as the training progressed in all groups, thereby 
ruling out the possibility that the observed improvements, especially in 
the no-reactivation group and the new no-reactivation group, were due 
to a shift in performance strategy in favor of the eccentric task.

4. Discussion

In this study, we attempted to replicate the study of Amar-Halpert 
et al. (2017) using a larger number of observers and an improved 
experimental design. We did observe significant improvement in the 
reactivation group and the full-practice group as Amar-Halpert et al. 
(2017) showed. However, these improvements were comparable to that 
of the no-reactivation group. Moreover, further practice of the TDT task 
for an additional three days, the reactivation and no-reactivation groups 
showed additional significant improvements. After improving the 
schemes of the constant stimuli method, we still observed that im-
provements brought by reactivation and no-reactivation were 

Fig. 7. Performance on the fixation task across days in each group. a-d. The accuracy of the fixation task changed as days in the reactivation group (a), the no- 
reactivation group (b), the full-practice group (c), the new reactivation group, and the new no-reactivation group (d). Solid triangles and hollow circles repre-
sented mean and individual values, respectively. Error bars indicated ± 1 standard error of the mean.
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comparable. Our results suggested that the improvement in the TDT task 
associated with brief reactivation (5 trials per day over 3 days) did not 
surpass that of the no-reactivation group with no exposure to the TDT 
task over the same time period. Therefore, brief memory reactivation 
may not significantly contribute to the improvement of perceptual 
learning.

Both our main experiment and control experiment demonstrated that 
reactivation did not yield additional gains in learning improvement 
compared to a no-reactivation condition. The primary inconsistency 
between our study and Amar-Halpert et al. (2017) lies in the no- 
reactivation condition. In our no-reactivation group (n = 23), the pre- 
test and post-test were conducted three days apart, which aligned with 
the training schedules of the reactivation group, and we still found 
significant learning improvement. In contrast, Amar-Halpert et al. 
(2017) employed the improvement of two consecutive days (from day 1 
to day 2) in the full-practice group (n = 12) as a no-reactivation control 
condition and found the improvement is insignificant (MPI = 2.9 ± 5.8 
%). This setting may be inappropriate as a no-reactivation control con-
dition, given that the time interval from pre-test to post-test in the 
reactivation group was four days, whereas it was one day in this setting. 
The time interval may have a significant influence on the size of the 
retest effect (Scharfen et al., 2018). In addition, contrary to their finding, 
the learning progress from day 1 to day 2 in our full-practice group was 
significant (MPI = 12.5 ± 4.2 %, using the same fitting method). On the 
other hand, it is noteworthy that Amar-Halpert et al. (2017) arranged a 
no-reactivation group (n = 7) in which the pre-test and post-test were 
spaced over nine days to align with their far-threshold reactivation 
condition, and they reported no progress in this no-reactivation group 
(with a threshold decrease of 7.6 ± 3.3 ms). The spaced time may be 
excessively long and could lead to memory decay, potentially explaining 
the lack of progress (F. Wang et al., 2016). With a relatively large sample 
size, our no-reactivation group followed a training schedule that was 
consistent with those of the reactivation and full-practice group and 
showed significant improvement that is comparable to that observed in 
the reactivation group. The improvement of the no-reactivation group 
can be attributed to significant retest effects or fast learning occurring in 
session, consistent with the widely observed significant retest effects in 
various tasks as shown in meta-analytic evidence (Scharfen, Jansen, & 
Holling, 2018; Scharfen, Peters, & Holling, 2018).

In phase I of our main experiment, the improvements in the full- 
practice group were comparable to those of the reactivation group, 
consistent with the results of Amar-Halpert et al. (2017). Recently the 
same group used fMRI to reveal the neural mechanisms of reactivation 
and standard repetition-based learning (Kondat et al., 2024). Again they 
demonstrated comparable improvements in a group with brief memory 
reactivations (n = 20) and a group with full practice (n = 20). Unfor-
tunately, they did not arrange a no-reactivation group in this study. One 
might argue that the results from between-group comparisons were 
affected to some extent by individual differences (Chua et al., 2022; Dale 
et al., 2021; Yang et al., 2020). Hence, the within-group design of our 
main experiment, by having the reactivation and no-reactivation groups 
continue to practice the same task for an additional three days after the 
post-test on day 5, might overcome the limitations of between-group 
comparison. The total improvement of the two phases in both groups 
was significantly greater than the improvements achieved in Phase 1, 
demonstrating that the fullpractice effect was significantly superior to 
the effects of brief memory reactivation or simple test–retest. These 
results were consistent with the findings of Chen and de Beeck (2021), 
which demonstrated that the reactivation-induced improvement is 
significantly less than that achieved through full practice in more 
complex visual object learning. We speculated that the subtle im-
provements in our full-practice group could be partially attributed to the 
experimental design: most observers in this group experienced consec-
utive 5 days of full practice while the observers in the other two groups 
underwent spaced practice during the two phases of operation (~8 
days). Time interval has been proven to play a substantial role in 

learning and memory, as spaced learning is reported to be more effective 
than massed learning (Raviv et al., 2022; Smolen et al., 2016; Vlach 
et al., 2008).

We initially employed the same constant stimuli method as described 
by Amar-Halpert et al. (2017), comprising 14 different SOAs, with each 
SOA containing only 18 trials. This method involved an excessive 
number of stimulus levels and an insufficient number of trials per 
stimulus level, potentially rendering the experimental data susceptible 
to the non-stationarity in observer behavior, which can lead to over-
dispersion in the data (Blackwell, 1952). The data overdispersion may 
signify a high level of uncertainty in threshold fitting (Schütt et al., 
2016). In addition to the same fitting method as Amar-Halpert et al. 
(2017), we also provided the psignifit4 fitting method (Schütt et al., 
2016), which allows accurate Bayesian estimation of psychometric 
functions for (potentially) overdispersed data. Though different fitting 
methods might induce varying threshold estimates (Kingdom & Prins, 
2010; Manning et al., 2018), the two fitting methods draw consistent 
conclusions in our study. More importantly, we refined the constant 
stimuli method with fewer stimulus levels and more trials per level, 
which resulted in better fitting quality and possibly more accurate 
threshold estimation, and we still observed comparable improvements 
brought by reactivation and no-reactivation groups. It is worth pointing 
out that all groups in our study showed larger finger errors/lapse rate 
values on day 1. This issue raised an important question in perceptual 
learning research: the estimate of pre-test performance is so crucial to 
the quantification of perceptual learning and its transfer (Zhang & Yu, 
2018). In particular, the estimation of pre-test performance should take 
into account the steep improvement that takes place in the first fifty or so 
trials, which may include learning that is not perceptual, but cognitive 
or procedural, such as how well the observer understands the task, in-
structions, response mappings, etc., as well as how to fixate and focus on 
the stimulus (Fahle et al., 1995; Karni & Sagi, 1993; Westheimer, 2001).

Whether reconsolidation following reactivation is a general property 
of all types of memory remains controversial. Studies with rodent 
models showed that although Pavlovian memory reconsolidation has 
been widely demonstrated, instrumental memory reconsolidation is still 
debated (Piva et al., 2020). Early investigations suggested that instru-
mental memories did not undergo reconsolidation (Brown et al., 2008; 
Hernandez & Kelley, 2004; Mierzejewski et al., 2009), while subsequent 
research indicated that these memories are just more resistant to 
destabilization and reconsolidation compared to Pavlovian memories 
(Exton-McGuinness et al., 2014; Tedesco et al., 2014). Likewise, human 
studies have demonstrated the reconsolidation of aversive and appeti-
tive memory, as well as procedural memory related to motor skill tasks 
(Fan et al., 2020; Schwabe et al., 2014; Silva & Soares, 2018), whereas 
whether declarative memory could undergo reconsolidation is under 
debate (Chan & LaPaglia, 2013; Forcato et al., 2007; Hardwicke et al., 
2016; Klingmüller et al., 2017). These discrepancies may be due to that 
memory involving more diverse and complex cortical circuits is more 
difficult to be modified via a reconsolidation process, as suggested by the 
fact that Pavlovian-conditioning fear memory involves relatively simple 
neural circuits centered at the amygdala, while declarative memories 
appear to involve broadly distributed neural circuits centered at the 
prefrontal cortex (Kim et al., 2021). Amar-Halpert et al. (2017) first 
reported that visual perceptual learning can be enhanced by reactivation 
and reconsolidation, but our results indicated that brief memory reac-
tivation may not improve visual perception. Given the growing evidence 
supporting that visual perceptual learning operates at a conceptual level 
involving high-order cortical areas (Wang et al., 2016; Zhang et al., 
2010), we speculate that this type of memory may not be easy to 
experience post-retrieval reconsolidation.

Several possible limitations to this study warrant discussion. First, in 
perceptual learning studies, the threshold is usually measured with the 
method of constant stimuli (Ahissar & Hochstein, 1997; Karni & Sagi, 
1991), or adaptive procedures like the staircase procedure (Dosher & Lu, 
1998; Xiao et al., 2008; Yu et al., 2004). Previous studies have shown 
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that the exact conditions of measurement play an important role in 
learning and transfer (Manning et al., 2018; Xiong et al., 2016; Zhang & 
Yu, 2018). Further evidence is needed to determine whether the current 
results are specific to the particular psychophysical method. Second, 
although effective foveal fixation was shown as the high accuracy in the 
central tumbling T/L task, the observers could shift (without being 
aware of it) their gaze towards the trained quadrant with the TDT target 
by 1 to 2 degrees to gain resolution of the texture elements and reduce 
crowding. Further exploration combining eye tracking could be used to 
determine any changes in fixation behavior across practice sessions and 
to test whether the tumbling T/L task is completed by extra-foveal 
vision. Third, although our findings of the null effect of reactivation 
resonate with previous research in visual and other domains (Chalkia 
et al., 2021; Chen & de Beeck, 2021; Luyten & Beckers, 2017), the 
positive findings of Amar-Halpert et al. (2017) are supported by reac-
tivation effects in related paradigms like orientation detection (Bang 
et al., 2018). In the domain of motor learning, length of reactivation was 
identified as a crucial boundary condition determining whether human 
motor memories can undergo reconsolidation (de Beukelaar et al., 
2014). Similar boundary conditions have not been reported in visual 
perceptual learning, more replications and attempts are needed to 
confirm the existence of the reconsolidation phenomenon in the field of 
vision science.
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